A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html below:

Transfer Learning for Computer Vision Tutorial — PyTorch Tutorials 2.8.0+cu128 documentation

Transfer Learning for Computer Vision Tutorial#

Created On: Mar 24, 2017 | Last Updated: Jan 27, 2025 | Last Verified: Nov 05, 2024

Author: Sasank Chilamkurthy

In this tutorial, you will learn how to train a convolutional neural network for image classification using transfer learning. You can read more about the transfer learning at cs231n notes

Quoting these notes,

In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.

These two major transfer learning scenarios look as follows:

# License: BSD
# Author: Sasank Chilamkurthy

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory

cudnn.benchmark = True
plt.ion()   # interactive mode
<contextlib.ExitStack object at 0x7f4c68c0c7c0>
Load Data#

We will use torchvision and torch.utils.data packages for loading the data.

The problem we’re going to solve today is to train a model to classify ants and bees. We have about 120 training images each for ants and bees. There are 75 validation images for each class. Usually, this is a very small dataset to generalize upon, if trained from scratch. Since we are using transfer learning, we should be able to generalize reasonably well.

This dataset is a very small subset of imagenet.

Note

Download the data from here and extract it to the current directory.

# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

# We want to be able to train our model on an `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__
# such as CUDA, MPS, MTIA, or XPU. If the current accelerator is available, we will use it. Otherwise, we use the CPU.

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
Visualize a few images#

Let’s visualize a few training images so as to understand the data augmentations.

def imshow(inp, title=None):
    """Display image for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])
Training the model#

Now, let’s write a general function to train a model. Here, we will illustrate:

In the following, parameter scheduler is an LR scheduler object from torch.optim.lr_scheduler.

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    # Create a temporary directory to save training checkpoints
    with TemporaryDirectory() as tempdir:
        best_model_params_path = os.path.join(tempdir, 'best_model_params.pt')

        torch.save(model.state_dict(), best_model_params_path)
        best_acc = 0.0

        for epoch in range(num_epochs):
            print(f'Epoch {epoch}/{num_epochs - 1}')
            print('-' * 10)

            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    model.train()  # Set model to training mode
                else:
                    model.eval()   # Set model to evaluate mode

                running_loss = 0.0
                running_corrects = 0

                # Iterate over data.
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)

                    # zero the parameter gradients
                    optimizer.zero_grad()

                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
                        loss = criterion(outputs, labels)

                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()

                    # statistics
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
                if phase == 'train':
                    scheduler.step()

                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]

                print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

                # deep copy the model
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    torch.save(model.state_dict(), best_model_params_path)

            print()

        time_elapsed = time.time() - since
        print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
        print(f'Best val Acc: {best_acc:4f}')

        # load best model weights
        model.load_state_dict(torch.load(best_model_params_path, weights_only=True))
    return model
Visualizing the model predictions#

Generic function to display predictions for a few images

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title(f'predicted: {class_names[preds[j]]}')
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)
Finetuning the ConvNet#

Load a pretrained model and reset final fully connected layer.

Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /var/lib/ci-user/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

  0%|          | 0.00/44.7M [00:00<?, ?B/s]
 94%|█████████▍| 42.1M/44.7M [00:00<00:00, 441MB/s]
100%|██████████| 44.7M/44.7M [00:00<00:00, 440MB/s]
Train and evaluate#

It should take around 15-25 min on CPU. On GPU though, it takes less than a minute.

Epoch 0/24
----------
train Loss: 0.5745 Acc: 0.6926
val Loss: 0.1612 Acc: 0.9346

Epoch 1/24
----------
train Loss: 0.5432 Acc: 0.7623
val Loss: 0.3591 Acc: 0.8627

Epoch 2/24
----------
train Loss: 0.5119 Acc: 0.7336
val Loss: 0.3765 Acc: 0.8758

Epoch 3/24
----------
train Loss: 0.4419 Acc: 0.8320
val Loss: 0.4508 Acc: 0.8366

Epoch 4/24
----------
train Loss: 0.4929 Acc: 0.8115
val Loss: 0.1988 Acc: 0.9085

Epoch 5/24
----------
train Loss: 0.4073 Acc: 0.8238
val Loss: 0.2791 Acc: 0.8954

Epoch 6/24
----------
train Loss: 0.4813 Acc: 0.8156
val Loss: 0.2940 Acc: 0.8889

Epoch 7/24
----------
train Loss: 0.4508 Acc: 0.8402
val Loss: 0.2450 Acc: 0.9216

Epoch 8/24
----------
train Loss: 0.3920 Acc: 0.8320
val Loss: 0.2712 Acc: 0.9150

Epoch 9/24
----------
train Loss: 0.3082 Acc: 0.8770
val Loss: 0.2294 Acc: 0.9150

Epoch 10/24
----------
train Loss: 0.2437 Acc: 0.9098
val Loss: 0.2657 Acc: 0.9216

Epoch 11/24
----------
train Loss: 0.3398 Acc: 0.8484
val Loss: 0.2255 Acc: 0.9216

Epoch 12/24
----------
train Loss: 0.2634 Acc: 0.8893
val Loss: 0.2037 Acc: 0.9150

Epoch 13/24
----------
train Loss: 0.1894 Acc: 0.9262
val Loss: 0.2578 Acc: 0.9150

Epoch 14/24
----------
train Loss: 0.2690 Acc: 0.8566
val Loss: 0.2170 Acc: 0.9216

Epoch 15/24
----------
train Loss: 0.2729 Acc: 0.8648
val Loss: 0.2010 Acc: 0.9216

Epoch 16/24
----------
train Loss: 0.3079 Acc: 0.8770
val Loss: 0.2117 Acc: 0.9216

Epoch 17/24
----------
train Loss: 0.2758 Acc: 0.8975
val Loss: 0.2322 Acc: 0.9150

Epoch 18/24
----------
train Loss: 0.2639 Acc: 0.8852
val Loss: 0.2398 Acc: 0.9150

Epoch 19/24
----------
train Loss: 0.3235 Acc: 0.8566
val Loss: 0.2716 Acc: 0.9020

Epoch 20/24
----------
train Loss: 0.2691 Acc: 0.8852
val Loss: 0.2301 Acc: 0.9216

Epoch 21/24
----------
train Loss: 0.2086 Acc: 0.9098
val Loss: 0.2055 Acc: 0.9216

Epoch 22/24
----------
train Loss: 0.3290 Acc: 0.8648
val Loss: 0.2559 Acc: 0.9150

Epoch 23/24
----------
train Loss: 0.3096 Acc: 0.8566
val Loss: 0.2090 Acc: 0.9216

Epoch 24/24
----------
train Loss: 0.3332 Acc: 0.8402
val Loss: 0.2022 Acc: 0.9216

Training complete in 0m 34s
Best val Acc: 0.934641
visualize_model(model_ft)
Inference on custom images#

Use the trained model to make predictions on custom images and visualize the predicted class labels along with the images.

def visualize_model_predictions(model,img_path):
    was_training = model.training
    model.eval()

    img = Image.open(img_path)
    img = data_transforms['val'](img)
    img = img.unsqueeze(0)
    img = img.to(device)

    with torch.no_grad():
        outputs = model(img)
        _, preds = torch.max(outputs, 1)

        ax = plt.subplot(2,2,1)
        ax.axis('off')
        ax.set_title(f'Predicted: {class_names[preds[0]]}')
        imshow(img.cpu().data[0])

        model.train(mode=was_training)
visualize_model_predictions(
    model_conv,
    img_path='data/hymenoptera_data/val/bees/72100438_73de9f17af.jpg'
)

plt.ioff()
plt.show()
Further Learning#

If you would like to learn more about the applications of transfer learning, checkout our Quantized Transfer Learning for Computer Vision Tutorial.

Total running time of the script: (1 minutes 3.538 seconds)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4