Created On: Aug 31, 2020 | Last Updated: Jun 24, 2025 | Last Verified: Nov 05, 2024
Hyperparameter tuning can make the difference between an average model and a highly accurate one. Often simple things like choosing a different learning rate or changing a network layer size can have a dramatic impact on your model performance.
Fortunately, there are tools that help with finding the best combination of parameters. Ray Tune is an industry standard tool for distributed hyperparameter tuning. Ray Tune includes the latest hyperparameter search algorithms, integrates with various analysis libraries, and natively supports distributed training through Ray’s distributed machine learning engine.
In this tutorial, we will show you how to integrate Ray Tune into your PyTorch training workflow. We will extend this tutorial from the PyTorch documentation for training a CIFAR10 image classifier.
As you will see, we only need to add some slight modifications. In particular, we need to
wrap data loading and training in functions,
make some network parameters configurable,
add checkpointing (optional),
and define the search space for the model tuning
To run this tutorial, please make sure the following packages are installed:
ray[tune]
: Distributed hyperparameter tuning library
torchvision
: For the data transformers
Let’s start with the imports:
from functools import partial import os import tempfile from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import random_split import torchvision import torchvision.transforms as transforms from ray import tune from ray import train from ray.train import Checkpoint, get_checkpoint from ray.tune.schedulers import ASHAScheduler import ray.cloudpickle as pickle
Most of the imports are needed for building the PyTorch model. Only the last imports are for Ray Tune.
Data loaders#We wrap the data loaders in their own function and pass a global data directory. This way we can share a data directory between different trials.
def load_data(data_dir="./data"): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) trainset = torchvision.datasets.CIFAR10( root=data_dir, train=True, download=True, transform=transform ) testset = torchvision.datasets.CIFAR10( root=data_dir, train=False, download=True, transform=transform ) return trainset, testsetConfigurable neural network#
We can only tune those parameters that are configurable. In this example, we can specify the layer sizes of the fully connected layers:
class Net(nn.Module): def __init__(self, l1=120, l2=84): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, l1) self.fc2 = nn.Linear(l1, l2) self.fc3 = nn.Linear(l2, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return xThe train function#
Now it gets interesting, because we introduce some changes to the example from the PyTorch documentation.
We wrap the training script in a function train_cifar(config, data_dir=None)
. The config
parameter will receive the hyperparameters we would like to train with. The data_dir
specifies the directory where we load and store the data, so that multiple runs can share the same data source. We also load the model and optimizer state at the start of the run, if a checkpoint is provided. Further down in this tutorial you will find information on how to save the checkpoint and what it is used for.
net = Net(config["l1"], config["l2"]) checkpoint = get_checkpoint() if checkpoint: with checkpoint.as_directory() as checkpoint_dir: data_path = Path(checkpoint_dir) / "data.pkl" with open(data_path, "rb") as fp: checkpoint_state = pickle.load(fp) start_epoch = checkpoint_state["epoch"] net.load_state_dict(checkpoint_state["net_state_dict"]) optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"]) else: start_epoch = 0
The learning rate of the optimizer is made configurable, too:
optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9)
We also split the training data into a training and validation subset. We thus train on 80% of the data and calculate the validation loss on the remaining 20%. The batch sizes with which we iterate through the training and test sets are configurable as well.
Adding (multi) GPU support with DataParallel#Image classification benefits largely from GPUs. Luckily, we can continue to use PyTorch’s abstractions in Ray Tune. Thus, we can wrap our model in nn.DataParallel
to support data parallel training on multiple GPUs:
By using a device
variable we make sure that training also works when we have no GPUs available. PyTorch requires us to send our data to the GPU memory explicitly, like this:
for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device)
The code now supports training on CPUs, on a single GPU, and on multiple GPUs. Notably, Ray also supports fractional GPUs so we can share GPUs among trials, as long as the model still fits on the GPU memory. We’ll come back to that later.
Communicating with Ray Tune#The most interesting part is the communication with Ray Tune:
checkpoint_data = { "epoch": epoch, "net_state_dict": net.state_dict(), "optimizer_state_dict": optimizer.state_dict(), } with tempfile.TemporaryDirectory() as checkpoint_dir: data_path = Path(checkpoint_dir) / "data.pkl" with open(data_path, "wb") as fp: pickle.dump(checkpoint_data, fp) checkpoint = Checkpoint.from_directory(checkpoint_dir) train.report( {"loss": val_loss / val_steps, "accuracy": correct / total}, checkpoint=checkpoint, )
Here we first save a checkpoint and then report some metrics back to Ray Tune. Specifically, we send the validation loss and accuracy back to Ray Tune. Ray Tune can then use these metrics to decide which hyperparameter configuration lead to the best results. These metrics can also be used to stop bad performing trials early in order to avoid wasting resources on those trials.
The checkpoint saving is optional, however, it is necessary if we wanted to use advanced schedulers like Population Based Training. Also, by saving the checkpoint we can later load the trained models and validate them on a test set. Lastly, saving checkpoints is useful for fault tolerance, and it allows us to interrupt training and continue training later.
Full training function#The full code example looks like this:
def train_cifar(config, data_dir=None): net = Net(config["l1"], config["l2"]) device = "cpu" if torch.cuda.is_available(): device = "cuda:0" if torch.cuda.device_count() > 1: net = nn.DataParallel(net) net.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=config["lr"], momentum=0.9) checkpoint = get_checkpoint() if checkpoint: with checkpoint.as_directory() as checkpoint_dir: data_path = Path(checkpoint_dir) / "data.pkl" with open(data_path, "rb") as fp: checkpoint_state = pickle.load(fp) start_epoch = checkpoint_state["epoch"] net.load_state_dict(checkpoint_state["net_state_dict"]) optimizer.load_state_dict(checkpoint_state["optimizer_state_dict"]) else: start_epoch = 0 trainset, testset = load_data(data_dir) test_abs = int(len(trainset) * 0.8) train_subset, val_subset = random_split( trainset, [test_abs, len(trainset) - test_abs] ) trainloader = torch.utils.data.DataLoader( train_subset, batch_size=int(config["batch_size"]), shuffle=True, num_workers=8 ) valloader = torch.utils.data.DataLoader( val_subset, batch_size=int(config["batch_size"]), shuffle=True, num_workers=8 ) for epoch in range(start_epoch, 10): # loop over the dataset multiple times running_loss = 0.0 epoch_steps = 0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() epoch_steps += 1 if i % 2000 == 1999: # print every 2000 mini-batches print( "[%d, %5d] loss: %.3f" % (epoch + 1, i + 1, running_loss / epoch_steps) ) running_loss = 0.0 # Validation loss val_loss = 0.0 val_steps = 0 total = 0 correct = 0 for i, data in enumerate(valloader, 0): with torch.no_grad(): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() loss = criterion(outputs, labels) val_loss += loss.cpu().numpy() val_steps += 1 checkpoint_data = { "epoch": epoch, "net_state_dict": net.state_dict(), "optimizer_state_dict": optimizer.state_dict(), } with tempfile.TemporaryDirectory() as checkpoint_dir: data_path = Path(checkpoint_dir) / "data.pkl" with open(data_path, "wb") as fp: pickle.dump(checkpoint_data, fp) checkpoint = Checkpoint.from_directory(checkpoint_dir) train.report( {"loss": val_loss / val_steps, "accuracy": correct / total}, checkpoint=checkpoint, ) print("Finished Training")
As you can see, most of the code is adapted directly from the original example.
Test set accuracy#Commonly the performance of a machine learning model is tested on a hold-out test set with data that has not been used for training the model. We also wrap this in a function:
def test_accuracy(net, device="cpu"): trainset, testset = load_data() testloader = torch.utils.data.DataLoader( testset, batch_size=4, shuffle=False, num_workers=2 ) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() return correct / total
The function also expects a device
parameter, so we can do the test set validation on a GPU.
Lastly, we need to define Ray Tune’s search space. Here is an example:
config = { "l1": tune.choice([2 ** i for i in range(9)]), "l2": tune.choice([2 ** i for i in range(9)]), "lr": tune.loguniform(1e-4, 1e-1), "batch_size": tune.choice([2, 4, 8, 16]) }
The tune.choice()
accepts a list of values that are uniformly sampled from. In this example, the l1
and l2
parameters should be powers of 2 between 4 and 256, so either 4, 8, 16, 32, 64, 128, or 256. The lr
(learning rate) should be uniformly sampled between 0.0001 and 0.1. Lastly, the batch size is a choice between 2, 4, 8, and 16.
At each trial, Ray Tune will now randomly sample a combination of parameters from these search spaces. It will then train a number of models in parallel and find the best performing one among these. We also use the ASHAScheduler
which will terminate bad performing trials early.
We wrap the train_cifar
function with functools.partial
to set the constant data_dir
parameter. We can also tell Ray Tune what resources should be available for each trial:
gpus_per_trial = 2 # ... result = tune.run( partial(train_cifar, data_dir=data_dir), resources_per_trial={"cpu": 8, "gpu": gpus_per_trial}, config=config, num_samples=num_samples, scheduler=scheduler, checkpoint_at_end=True)
You can specify the number of CPUs, which are then available e.g. to increase the num_workers
of the PyTorch DataLoader
instances. The selected number of GPUs are made visible to PyTorch in each trial. Trials do not have access to GPUs that haven’t been requested for them - so you don’t have to care about two trials using the same set of resources.
Here we can also specify fractional GPUs, so something like gpus_per_trial=0.5
is completely valid. The trials will then share GPUs among each other. You just have to make sure that the models still fit in the GPU memory.
After training the models, we will find the best performing one and load the trained network from the checkpoint file. We then obtain the test set accuracy and report everything by printing.
The full main function looks like this:
def main(num_samples=10, max_num_epochs=10, gpus_per_trial=2): data_dir = os.path.abspath("./data") load_data(data_dir) config = { "l1": tune.choice([2**i for i in range(9)]), "l2": tune.choice([2**i for i in range(9)]), "lr": tune.loguniform(1e-4, 1e-1), "batch_size": tune.choice([2, 4, 8, 16]), } scheduler = ASHAScheduler( metric="loss", mode="min", max_t=max_num_epochs, grace_period=1, reduction_factor=2, ) result = tune.run( partial(train_cifar, data_dir=data_dir), resources_per_trial={"cpu": 2, "gpu": gpus_per_trial}, config=config, num_samples=num_samples, scheduler=scheduler, ) best_trial = result.get_best_trial("loss", "min", "last") print(f"Best trial config: {best_trial.config}") print(f"Best trial final validation loss: {best_trial.last_result['loss']}") print(f"Best trial final validation accuracy: {best_trial.last_result['accuracy']}") best_trained_model = Net(best_trial.config["l1"], best_trial.config["l2"]) device = "cpu" if torch.cuda.is_available(): device = "cuda:0" if gpus_per_trial > 1: best_trained_model = nn.DataParallel(best_trained_model) best_trained_model.to(device) best_checkpoint = result.get_best_checkpoint(trial=best_trial, metric="accuracy", mode="max") with best_checkpoint.as_directory() as checkpoint_dir: data_path = Path(checkpoint_dir) / "data.pkl" with open(data_path, "rb") as fp: best_checkpoint_data = pickle.load(fp) best_trained_model.load_state_dict(best_checkpoint_data["net_state_dict"]) test_acc = test_accuracy(best_trained_model, device) print("Best trial test set accuracy: {}".format(test_acc)) if __name__ == "__main__": # You can change the number of GPUs per trial here: main(num_samples=10, max_num_epochs=10, gpus_per_trial=0)
0%| | 0.00/170M [00:00<?, ?B/s] 0%| | 459k/170M [00:00<00:37, 4.50MB/s] 1%|▏ | 2.56M/170M [00:00<00:11, 14.1MB/s] 3%|▎ | 5.28M/170M [00:00<00:08, 20.0MB/s] 5%|▌ | 8.85M/170M [00:00<00:06, 26.1MB/s] 8%|▊ | 13.3M/170M [00:00<00:04, 32.8MB/s] 11%|█ | 19.0M/170M [00:00<00:03, 40.9MB/s] 15%|█▌ | 26.2M/170M [00:00<00:02, 50.9MB/s] 21%|██ | 35.3M/170M [00:00<00:02, 63.2MB/s] 26%|██▌ | 44.6M/170M [00:00<00:01, 72.6MB/s] 33%|███▎ | 55.6M/170M [00:01<00:01, 83.9MB/s] 38%|███▊ | 64.7M/170M [00:01<00:01, 86.0MB/s] 44%|████▍ | 75.8M/170M [00:01<00:01, 93.5MB/s] 50%|█████ | 85.4M/170M [00:01<00:00, 94.4MB/s] 56%|█████▋ | 95.9M/170M [00:01<00:00, 97.7MB/s] 62%|██████▏ | 106M/170M [00:01<00:00, 99.6MB/s] 69%|██████▉ | 118M/170M [00:01<00:00, 104MB/s] 76%|███████▌ | 129M/170M [00:01<00:00, 106MB/s] 82%|████████▏ | 140M/170M [00:01<00:00, 109MB/s] 89%|████████▉ | 152M/170M [00:01<00:00, 110MB/s] 96%|█████████▌| 163M/170M [00:02<00:00, 111MB/s] 100%|██████████| 170M/170M [00:02<00:00, 82.2MB/s] 2025-08-13 15:21:52,137 WARNING services.py:1889 -- WARNING: The object store is using /tmp instead of /dev/shm because /dev/shm has only 2147467264 bytes available. This will harm performance! You may be able to free up space by deleting files in /dev/shm. If you are inside a Docker container, you can increase /dev/shm size by passing '--shm-size=10.24gb' to 'docker run' (or add it to the run_options list in a Ray cluster config). Make sure to set this to more than 30% of available RAM. 2025-08-13 15:21:52,303 INFO worker.py:1642 -- Started a local Ray instance. 2025-08-13 15:21:53,205 INFO tune.py:228 -- Initializing Ray automatically. For cluster usage or custom Ray initialization, call `ray.init(...)` before `tune.run(...)`. 2025-08-13 15:21:53,206 INFO tune.py:654 -- [output] This will use the new output engine with verbosity 2. To disable the new output and use the legacy output engine, set the environment variable RAY_AIR_NEW_OUTPUT=0. For more information, please see https://github.com/ray-project/ray/issues/36949 ╭────────────────────────────────────────────────────────────────────╮ │ Configuration for experiment train_cifar_2025-08-13_15-21-53 │ ├────────────────────────────────────────────────────────────────────┤ │ Search algorithm BasicVariantGenerator │ │ Scheduler AsyncHyperBandScheduler │ │ Number of trials 10 │ ╰────────────────────────────────────────────────────────────────────╯ View detailed results here: /var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53 To visualize your results with TensorBoard, run: `tensorboard --logdir /var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53` Trial status: 10 PENDING Current time: 2025-08-13 15:21:53. Total running time: 0s Logical resource usage: 14.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭───────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size │ ├───────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 PENDING 64 4 0.0120539 16 │ │ train_cifar_3dc4d_00001 PENDING 16 16 0.000104754 8 │ │ train_cifar_3dc4d_00002 PENDING 32 256 0.0634262 2 │ │ train_cifar_3dc4d_00003 PENDING 2 16 0.00375536 16 │ │ train_cifar_3dc4d_00004 PENDING 128 32 0.0153464 8 │ │ train_cifar_3dc4d_00005 PENDING 64 256 0.0199109 4 │ │ train_cifar_3dc4d_00006 PENDING 4 256 0.000995963 8 │ │ train_cifar_3dc4d_00007 PENDING 256 8 0.00531861 2 │ │ train_cifar_3dc4d_00008 PENDING 4 64 0.00165956 16 │ │ train_cifar_3dc4d_00009 PENDING 1 1 0.00962312 2 │ ╰───────────────────────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00002 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00002 config │ ├──────────────────────────────────────────────────┤ │ batch_size 2 │ │ l1 32 │ │ l2 256 │ │ lr 0.06343 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00004 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00004 config │ ├──────────────────────────────────────────────────┤ │ batch_size 8 │ │ l1 128 │ │ l2 32 │ │ lr 0.01535 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00001 started with configuration: ╭─────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00001 config │ ├─────────────────────────────────────────────────┤ │ batch_size 8 │ │ l1 16 │ │ l2 16 │ │ lr 0.0001 │ ╰─────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 started with configuration: ╭────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 config │ ├────────────────────────────────────────────────┤ │ batch_size 8 │ │ l1 4 │ │ l2 256 │ │ lr 0.001 │ ╰────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00005 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00005 config │ ├──────────────────────────────────────────────────┤ │ batch_size 4 │ │ l1 64 │ │ l2 256 │ │ lr 0.01991 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00003 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00003 config │ ├──────────────────────────────────────────────────┤ │ batch_size 16 │ │ l1 2 │ │ l2 16 │ │ lr 0.00376 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 config │ ├──────────────────────────────────────────────────┤ │ batch_size 16 │ │ l1 64 │ │ l2 4 │ │ lr 0.01205 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00007 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00007 config │ ├──────────────────────────────────────────────────┤ │ batch_size 2 │ │ l1 256 │ │ l2 8 │ │ lr 0.00532 │ ╰──────────────────────────────────────────────────╯ (func pid=3878) [1, 2000] loss: 2.392 (func pid=3878) [1, 4000] loss: 1.190 [repeated 8x across cluster] (Ray deduplicates logs by default. Set RAY_DEDUP_LOGS=0 to disable log deduplication, or see https://docs.ray.io/en/master/ray-observability/ray-logging.html#log-deduplication for more options.) Trial status: 8 RUNNING | 2 PENDING Current time: 2025-08-13 15:22:23. Total running time: 30s Logical resource usage: 16.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭───────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size │ ├───────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 │ │ train_cifar_3dc4d_00001 RUNNING 16 16 0.000104754 8 │ │ train_cifar_3dc4d_00002 RUNNING 32 256 0.0634262 2 │ │ train_cifar_3dc4d_00003 RUNNING 2 16 0.00375536 16 │ │ train_cifar_3dc4d_00004 RUNNING 128 32 0.0153464 8 │ │ train_cifar_3dc4d_00005 RUNNING 64 256 0.0199109 4 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 │ │ train_cifar_3dc4d_00007 RUNNING 256 8 0.00531861 2 │ │ train_cifar_3dc4d_00008 PENDING 4 64 0.00165956 16 │ │ train_cifar_3dc4d_00009 PENDING 1 1 0.00962312 2 │ ╰───────────────────────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 finished iteration 1 at 2025-08-13 15:22:23. Total running time: 30s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 25.83727 │ │ time_total_s 25.83727 │ │ training_iteration 1 │ │ accuracy 0.3109 │ │ loss 1.78508 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00003 finished iteration 1 at 2025-08-13 15:22:23. Total running time: 30s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00003 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 25.95684 │ │ time_total_s 25.95684 │ │ training_iteration 1 │ │ accuracy 0.2704 │ │ loss 1.8444 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00003 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00003_3_batch_size=16,l1=2,l2=16,lr=0.0038_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00003 completed after 1 iterations at 2025-08-13 15:22:23. Total running time: 30s (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000000) Trial train_cifar_3dc4d_00008 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 config │ ├──────────────────────────────────────────────────┤ │ batch_size 16 │ │ l1 4 │ │ l2 64 │ │ lr 0.00166 │ ╰──────────────────────────────────────────────────╯ (func pid=3878) [1, 6000] loss: 0.792 [repeated 6x across cluster] (func pid=3876) [2, 2000] loss: 1.682 [repeated 3x across cluster] Trial train_cifar_3dc4d_00001 finished iteration 1 at 2025-08-13 15:22:40. Total running time: 47s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00001 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 42.76438 │ │ time_total_s 42.76438 │ │ training_iteration 1 │ │ accuracy 0.145 │ │ loss 2.30015 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00001 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00001_1_batch_size=8,l1=16,l2=16,lr=0.0001_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00001 completed after 1 iterations at 2025-08-13 15:22:40. Total running time: 47s Trial train_cifar_3dc4d_00004 finished iteration 1 at 2025-08-13 15:22:40. Total running time: 47s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00004 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 42.78807 │ │ time_total_s 42.78807 │ │ training_iteration 1 │ │ accuracy 0.337 │ │ loss 1.82967 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00009 started with configuration: ╭──────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00009 config │ ├──────────────────────────────────────────────────┤ │ batch_size 2 │ │ l1 1 │ │ l2 1 │ │ lr 0.00962 │ ╰──────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00004 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00004_4_batch_size=8,l1=128,l2=32,lr=0.0153_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00006 finished iteration 1 at 2025-08-13 15:22:40. Total running time: 47s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 42.80081 │ │ time_total_s 42.80081 │ │ training_iteration 1 │ │ accuracy 0.4048 │ │ loss 1.64671 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000000 (func pid=3880) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00004_4_batch_size=8,l1=128,l2=32,lr=0.0153_2025-08-13_15-21-53/checkpoint_000000) [repeated 2x across cluster] (func pid=3878) [1, 8000] loss: 0.594 [repeated 2x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 2 at 2025-08-13 15:22:46. Total running time: 53s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000001 │ │ time_this_iter_s 22.88314 │ │ time_total_s 48.72041 │ │ training_iteration 2 │ │ accuracy 0.4275 │ │ loss 1.59602 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000001 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000001) [repeated 3x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 1 at 2025-08-13 15:22:47. Total running time: 54s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 23.91913 │ │ time_total_s 23.91913 │ │ training_iteration 1 │ │ accuracy 0.3414 │ │ loss 1.7516 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000000 Trial status: 8 RUNNING | 2 TERMINATED Current time: 2025-08-13 15:22:53. Total running time: 1min 0s Logical resource usage: 16.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 2 48.7204 1.59602 0.4275 │ │ train_cifar_3dc4d_00002 RUNNING 32 256 0.0634262 2 │ │ train_cifar_3dc4d_00004 RUNNING 128 32 0.0153464 8 1 42.7881 1.82967 0.337 │ │ train_cifar_3dc4d_00005 RUNNING 64 256 0.0199109 4 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 1 42.8008 1.64671 0.4048 │ │ train_cifar_3dc4d_00007 RUNNING 256 8 0.00531861 2 │ │ train_cifar_3dc4d_00008 RUNNING 4 64 0.00165956 16 1 23.9191 1.7516 0.3414 │ │ train_cifar_3dc4d_00009 RUNNING 1 1 0.00962312 2 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3877) [1, 2000] loss: 2.315 [repeated 3x across cluster] (func pid=3876) [3, 2000] loss: 1.564 [repeated 6x across cluster] (func pid=3880) [2, 4000] loss: 0.915 [repeated 5x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 3 at 2025-08-13 15:23:10. Total running time: 1min 17s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000002 │ │ time_this_iter_s 24.23225 │ │ time_total_s 72.95266 │ │ training_iteration 3 │ │ accuracy 0.4385 │ │ loss 1.56449 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 3 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000002 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000002) [repeated 2x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 2 at 2025-08-13 15:23:12. Total running time: 1min 19s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000001 │ │ time_this_iter_s 24.59347 │ │ time_total_s 48.5126 │ │ training_iteration 2 │ │ accuracy 0.4096 │ │ loss 1.53075 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000001 Trial train_cifar_3dc4d_00005 finished iteration 1 at 2025-08-13 15:23:13. Total running time: 1min 19s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00005 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 75.4326 │ │ time_total_s 75.4326 │ │ training_iteration 1 │ │ accuracy 0.2171 │ │ loss 2.10074 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00005 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00005_5_batch_size=4,l1=64,l2=256,lr=0.0199_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00005 completed after 1 iterations at 2025-08-13 15:23:13. Total running time: 1min 19s (func pid=3877) [1, 6000] loss: 0.771 [repeated 2x across cluster] Trial train_cifar_3dc4d_00006 finished iteration 2 at 2025-08-13 15:23:19. Total running time: 1min 26s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000001 │ │ time_this_iter_s 38.98611 │ │ time_total_s 81.78692 │ │ training_iteration 2 │ │ accuracy 0.4582 │ │ loss 1.49926 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000001 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000001) [repeated 3x across cluster] Trial train_cifar_3dc4d_00004 finished iteration 2 at 2025-08-13 15:23:20. Total running time: 1min 27s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00004 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000001 │ │ time_this_iter_s 40.14829 │ │ time_total_s 82.93636 │ │ training_iteration 2 │ │ accuracy 0.3376 │ │ loss 1.82965 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00004 saved a checkpoint for iteration 2 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00004_4_batch_size=8,l1=128,l2=32,lr=0.0153_2025-08-13_15-21-53/checkpoint_000001 Trial train_cifar_3dc4d_00004 completed after 2 iterations at 2025-08-13 15:23:20. Total running time: 1min 27s Trial status: 6 RUNNING | 4 TERMINATED Current time: 2025-08-13 15:23:23. Total running time: 1min 30s Logical resource usage: 12.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 3 72.9527 1.56449 0.4385 │ │ train_cifar_3dc4d_00002 RUNNING 32 256 0.0634262 2 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 2 81.7869 1.49926 0.4582 │ │ train_cifar_3dc4d_00007 RUNNING 256 8 0.00531861 2 │ │ train_cifar_3dc4d_00008 RUNNING 4 64 0.00165956 16 2 48.5126 1.53075 0.4096 │ │ train_cifar_3dc4d_00009 RUNNING 1 1 0.00962312 2 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3877) [1, 8000] loss: 0.578 [repeated 3x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 4 at 2025-08-13 15:23:29. Total running time: 1min 36s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000003 │ │ time_this_iter_s 18.44161 │ │ time_total_s 91.39427 │ │ training_iteration 4 │ │ accuracy 0.4801 │ │ loss 1.4392 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 4 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000003 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000003) [repeated 2x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 3 at 2025-08-13 15:23:30. Total running time: 1min 37s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000002 │ │ time_this_iter_s 18.22025 │ │ time_total_s 66.73286 │ │ training_iteration 3 │ │ accuracy 0.4678 │ │ loss 1.42236 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 3 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000002 (func pid=3882) [3, 2000] loss: 1.399 [repeated 5x across cluster] (func pid=3883) [1, 18000] loss: 0.224 [repeated 3x across cluster] (func pid=3876) [5, 2000] loss: 1.459 [repeated 3x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 5 at 2025-08-13 15:23:46. Total running time: 1min 53s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000004 │ │ time_this_iter_s 17.27542 │ │ time_total_s 108.66969 │ │ training_iteration 5 │ │ accuracy 0.4586 │ │ loss 1.50032 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 5 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000004 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000004) [repeated 2x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 4 at 2025-08-13 15:23:47. Total running time: 1min 54s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000003 │ │ time_this_iter_s 17.26097 │ │ time_total_s 83.99382 │ │ training_iteration 4 │ │ accuracy 0.4932 │ │ loss 1.35208 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 4 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000003 (func pid=3877) [1, 14000] loss: 0.331 [repeated 4x across cluster] Trial train_cifar_3dc4d_00006 finished iteration 3 at 2025-08-13 15:23:49. Total running time: 1min 56s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000002 │ │ time_this_iter_s 29.77142 │ │ time_total_s 111.55834 │ │ training_iteration 3 │ │ accuracy 0.5066 │ │ loss 1.33143 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 3 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000002 Trial status: 6 RUNNING | 4 TERMINATED Current time: 2025-08-13 15:23:53. Total running time: 2min 0s Logical resource usage: 12.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 5 108.67 1.50032 0.4586 │ │ train_cifar_3dc4d_00002 RUNNING 32 256 0.0634262 2 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 3 111.558 1.33143 0.5066 │ │ train_cifar_3dc4d_00007 RUNNING 256 8 0.00531861 2 │ │ train_cifar_3dc4d_00008 RUNNING 4 64 0.00165956 16 4 83.9938 1.35208 0.4932 │ │ train_cifar_3dc4d_00009 RUNNING 1 1 0.00962312 2 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3877) [1, 16000] loss: 0.289 Trial train_cifar_3dc4d_00002 finished iteration 1 at 2025-08-13 15:23:58. Total running time: 2min 5s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00002 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 120.65356 │ │ time_total_s 120.65356 │ │ training_iteration 1 │ │ accuracy 0.0941 │ │ loss 2.32876 │ ╰────────────────────────────────────────────────────────────╯ (func pid=3878) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00002_2_batch_size=2,l1=32,l2=256,lr=0.0634_2025-08-13_15-21-53/checkpoint_000000) [repeated 3x across cluster] Trial train_cifar_3dc4d_00002 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00002_2_batch_size=2,l1=32,l2=256,lr=0.0634_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00002 completed after 1 iterations at 2025-08-13 15:23:58. Total running time: 2min 5s (func pid=3876) [6, 2000] loss: 1.428 Trial train_cifar_3dc4d_00007 finished iteration 1 at 2025-08-13 15:24:00. Total running time: 2min 7s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00007 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 123.04322 │ │ time_total_s 123.04322 │ │ training_iteration 1 │ │ accuracy 0.219 │ │ loss 2.09622 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00007 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00007_7_batch_size=2,l1=256,l2=8,lr=0.0053_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00007 completed after 1 iterations at 2025-08-13 15:24:00. Total running time: 2min 7s Trial train_cifar_3dc4d_00000 finished iteration 6 at 2025-08-13 15:24:03. Total running time: 2min 9s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000005 │ │ time_this_iter_s 16.53528 │ │ time_total_s 125.20497 │ │ training_iteration 6 │ │ accuracy 0.4699 │ │ loss 1.54858 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 6 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000005 (func pid=3877) [1, 18000] loss: 0.257 [repeated 3x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 5 at 2025-08-13 15:24:03. Total running time: 2min 10s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000004 │ │ time_this_iter_s 16.13903 │ │ time_total_s 100.13286 │ │ training_iteration 5 │ │ accuracy 0.4925 │ │ loss 1.3511 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 5 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000004 (func pid=3879) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000004) [repeated 3x across cluster] (func pid=3877) [1, 20000] loss: 0.231 [repeated 2x across cluster] Trial train_cifar_3dc4d_00006 finished iteration 4 at 2025-08-13 15:24:16. Total running time: 2min 23s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000003 │ │ time_this_iter_s 27.08446 │ │ time_total_s 138.6428 │ │ training_iteration 4 │ │ accuracy 0.5169 │ │ loss 1.31441 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 4 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000003 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000003) Trial train_cifar_3dc4d_00000 finished iteration 7 at 2025-08-13 15:24:18. Total running time: 2min 25s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000006 │ │ time_this_iter_s 15.54585 │ │ time_total_s 140.75082 │ │ training_iteration 7 │ │ accuracy 0.5002 │ │ loss 1.47218 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 7 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000006 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000006) Trial train_cifar_3dc4d_00008 finished iteration 6 at 2025-08-13 15:24:19. Total running time: 2min 25s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000005 │ │ time_this_iter_s 15.02945 │ │ time_total_s 115.16231 │ │ training_iteration 6 │ │ accuracy 0.5277 │ │ loss 1.29414 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 6 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000005 Trial train_cifar_3dc4d_00009 finished iteration 1 at 2025-08-13 15:24:22. Total running time: 2min 29s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00009 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000000 │ │ time_this_iter_s 101.87905 │ │ time_total_s 101.87905 │ │ training_iteration 1 │ │ accuracy 0.099 │ │ loss 2.31671 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00009 saved a checkpoint for iteration 1 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00009_9_batch_size=2,l1=1,l2=1,lr=0.0096_2025-08-13_15-21-53/checkpoint_000000 Trial train_cifar_3dc4d_00009 completed after 1 iterations at 2025-08-13 15:24:22. Total running time: 2min 29s Trial status: 3 RUNNING | 7 TERMINATED Current time: 2025-08-13 15:24:23. Total running time: 2min 30s Logical resource usage: 6.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 7 140.751 1.47218 0.5002 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 4 138.643 1.31441 0.5169 │ │ train_cifar_3dc4d_00008 RUNNING 4 64 0.00165956 16 6 115.162 1.29414 0.5277 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00002 TERMINATED 32 256 0.0634262 2 1 120.654 2.32876 0.0941 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ │ train_cifar_3dc4d_00007 TERMINATED 256 8 0.00531861 2 1 123.043 2.09622 0.219 │ │ train_cifar_3dc4d_00009 TERMINATED 1 1 0.00962312 2 1 101.879 2.31671 0.099 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3882) [5, 2000] loss: 1.285 [repeated 3x across cluster] (func pid=3882) [5, 4000] loss: 0.649 [repeated 3x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 8 at 2025-08-13 15:24:32. Total running time: 2min 39s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000007 │ │ time_this_iter_s 14.08724 │ │ time_total_s 154.83807 │ │ training_iteration 8 │ │ accuracy 0.4781 │ │ loss 1.51162 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 8 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000007 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000007) [repeated 3x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 7 at 2025-08-13 15:24:32. Total running time: 2min 39s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000006 │ │ time_this_iter_s 13.94972 │ │ time_total_s 129.11203 │ │ training_iteration 7 │ │ accuracy 0.5288 │ │ loss 1.29213 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 7 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000006 Trial train_cifar_3dc4d_00006 finished iteration 5 at 2025-08-13 15:24:39. Total running time: 2min 45s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000004 │ │ time_this_iter_s 22.58598 │ │ time_total_s 161.22878 │ │ training_iteration 5 │ │ accuracy 0.5185 │ │ loss 1.3184 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 5 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000004 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000004) [repeated 2x across cluster] (func pid=3876) [9, 2000] loss: 1.381 (func pid=3879) [8, 2000] loss: 1.262 Trial train_cifar_3dc4d_00000 finished iteration 9 at 2025-08-13 15:24:46. Total running time: 2min 53s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000008 │ │ time_this_iter_s 13.70869 │ │ time_total_s 168.54675 │ │ training_iteration 9 │ │ accuracy 0.4626 │ │ loss 1.57085 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 9 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000008 Trial train_cifar_3dc4d_00008 finished iteration 8 at 2025-08-13 15:24:46. Total running time: 2min 53s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000007 │ │ time_this_iter_s 13.59318 │ │ time_total_s 142.70521 │ │ training_iteration 8 │ │ accuracy 0.5403 │ │ loss 1.27085 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 8 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000007 (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000008) (func pid=3879) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000007) Trial status: 3 RUNNING | 7 TERMINATED Current time: 2025-08-13 15:24:53. Total running time: 3min 0s Logical resource usage: 6.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 RUNNING 64 4 0.0120539 16 9 168.547 1.57085 0.4626 │ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 5 161.229 1.3184 0.5185 │ │ train_cifar_3dc4d_00008 RUNNING 4 64 0.00165956 16 8 142.705 1.27085 0.5403 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00002 TERMINATED 32 256 0.0634262 2 1 120.654 2.32876 0.0941 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ │ train_cifar_3dc4d_00007 TERMINATED 256 8 0.00531861 2 1 123.043 2.09622 0.219 │ │ train_cifar_3dc4d_00009 TERMINATED 1 1 0.00962312 2 1 101.879 2.31671 0.099 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3882) [6, 4000] loss: 0.633 [repeated 2x across cluster] Trial train_cifar_3dc4d_00000 finished iteration 10 at 2025-08-13 15:25:00. Total running time: 3min 7s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00000 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000009 │ │ time_this_iter_s 13.76265 │ │ time_total_s 182.3094 │ │ training_iteration 10 │ │ accuracy 0.4682 │ │ loss 1.58741 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00000 saved a checkpoint for iteration 10 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000009 Trial train_cifar_3dc4d_00000 completed after 10 iterations at 2025-08-13 15:25:00. Total running time: 3min 7s (func pid=3876) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00000_0_batch_size=16,l1=64,l2=4,lr=0.0121_2025-08-13_15-21-53/checkpoint_000009) Trial train_cifar_3dc4d_00008 finished iteration 9 at 2025-08-13 15:25:00. Total running time: 3min 7s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000008 │ │ time_this_iter_s 13.80915 │ │ time_total_s 156.51436 │ │ training_iteration 9 │ │ accuracy 0.5471 │ │ loss 1.22852 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 9 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000008 (func pid=3879) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000008) Trial train_cifar_3dc4d_00006 finished iteration 6 at 2025-08-13 15:25:02. Total running time: 3min 8s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000005 │ │ time_this_iter_s 23.09412 │ │ time_total_s 184.32291 │ │ training_iteration 6 │ │ accuracy 0.5385 │ │ loss 1.27599 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 6 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000005 (func pid=3879) [10, 2000] loss: 1.218 [repeated 3x across cluster] Trial train_cifar_3dc4d_00008 finished iteration 10 at 2025-08-13 15:25:11. Total running time: 3min 18s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00008 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000009 │ │ time_this_iter_s 11.21119 │ │ time_total_s 167.72555 │ │ training_iteration 10 │ │ accuracy 0.5472 │ │ loss 1.23279 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00008 saved a checkpoint for iteration 10 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000009 Trial train_cifar_3dc4d_00008 completed after 10 iterations at 2025-08-13 15:25:11. Total running time: 3min 18s (func pid=3879) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00008_8_batch_size=16,l1=4,l2=64,lr=0.0017_2025-08-13_15-21-53/checkpoint_000009) [repeated 2x across cluster] (func pid=3882) [7, 4000] loss: 0.619 [repeated 2x across cluster] Trial train_cifar_3dc4d_00006 finished iteration 7 at 2025-08-13 15:25:20. Total running time: 3min 27s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000006 │ │ time_this_iter_s 18.29133 │ │ time_total_s 202.61424 │ │ training_iteration 7 │ │ accuracy 0.5304 │ │ loss 1.29518 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 7 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000006 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000006) Trial status: 9 TERMINATED | 1 RUNNING Current time: 2025-08-13 15:25:23. Total running time: 3min 30s Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 7 202.614 1.29518 0.5304 │ │ train_cifar_3dc4d_00000 TERMINATED 64 4 0.0120539 16 10 182.309 1.58741 0.4682 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00002 TERMINATED 32 256 0.0634262 2 1 120.654 2.32876 0.0941 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ │ train_cifar_3dc4d_00007 TERMINATED 256 8 0.00531861 2 1 123.043 2.09622 0.219 │ │ train_cifar_3dc4d_00008 TERMINATED 4 64 0.00165956 16 10 167.726 1.23279 0.5472 │ │ train_cifar_3dc4d_00009 TERMINATED 1 1 0.00962312 2 1 101.879 2.31671 0.099 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ (func pid=3882) [8, 2000] loss: 1.204 (func pid=3882) [8, 4000] loss: 0.610 Trial train_cifar_3dc4d_00006 finished iteration 8 at 2025-08-13 15:25:38. Total running time: 3min 45s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000007 │ │ time_this_iter_s 18.11711 │ │ time_total_s 220.73135 │ │ training_iteration 8 │ │ accuracy 0.543 │ │ loss 1.25839 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 8 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000007 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000007) (func pid=3882) [9, 2000] loss: 1.192 (func pid=3882) [9, 4000] loss: 0.608 Trial status: 9 TERMINATED | 1 RUNNING Current time: 2025-08-13 15:25:54. Total running time: 4min 0s Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00006 RUNNING 4 256 0.000995963 8 8 220.731 1.25839 0.543 │ │ train_cifar_3dc4d_00000 TERMINATED 64 4 0.0120539 16 10 182.309 1.58741 0.4682 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00002 TERMINATED 32 256 0.0634262 2 1 120.654 2.32876 0.0941 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ │ train_cifar_3dc4d_00007 TERMINATED 256 8 0.00531861 2 1 123.043 2.09622 0.219 │ │ train_cifar_3dc4d_00008 TERMINATED 4 64 0.00165956 16 10 167.726 1.23279 0.5472 │ │ train_cifar_3dc4d_00009 TERMINATED 1 1 0.00962312 2 1 101.879 2.31671 0.099 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 finished iteration 9 at 2025-08-13 15:25:56. Total running time: 4min 3s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000008 │ │ time_this_iter_s 18.0855 │ │ time_total_s 238.81686 │ │ training_iteration 9 │ │ accuracy 0.533 │ │ loss 1.31562 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 9 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000008 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000008) (func pid=3882) [10, 2000] loss: 1.187 (func pid=3882) [10, 4000] loss: 0.595 Trial train_cifar_3dc4d_00006 finished iteration 10 at 2025-08-13 15:26:15. Total running time: 4min 21s ╭────────────────────────────────────────────────────────────╮ │ Trial train_cifar_3dc4d_00006 result │ ├────────────────────────────────────────────────────────────┤ │ checkpoint_dir_name checkpoint_000009 │ │ time_this_iter_s 18.40161 │ │ time_total_s 257.21846 │ │ training_iteration 10 │ │ accuracy 0.5521 │ │ loss 1.24714 │ ╰────────────────────────────────────────────────────────────╯ Trial train_cifar_3dc4d_00006 saved a checkpoint for iteration 10 at: (local)/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000009 Trial train_cifar_3dc4d_00006 completed after 10 iterations at 2025-08-13 15:26:15. Total running time: 4min 21s Trial status: 10 TERMINATED Current time: 2025-08-13 15:26:15. Total running time: 4min 21s Logical resource usage: 2.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:A10G) ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮ │ Trial name status l1 l2 lr batch_size iter total time (s) loss accuracy │ ├────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┤ │ train_cifar_3dc4d_00000 TERMINATED 64 4 0.0120539 16 10 182.309 1.58741 0.4682 │ │ train_cifar_3dc4d_00001 TERMINATED 16 16 0.000104754 8 1 42.7644 2.30015 0.145 │ │ train_cifar_3dc4d_00002 TERMINATED 32 256 0.0634262 2 1 120.654 2.32876 0.0941 │ │ train_cifar_3dc4d_00003 TERMINATED 2 16 0.00375536 16 1 25.9568 1.8444 0.2704 │ │ train_cifar_3dc4d_00004 TERMINATED 128 32 0.0153464 8 2 82.9364 1.82965 0.3376 │ │ train_cifar_3dc4d_00005 TERMINATED 64 256 0.0199109 4 1 75.4326 2.10074 0.2171 │ │ train_cifar_3dc4d_00006 TERMINATED 4 256 0.000995963 8 10 257.218 1.24714 0.5521 │ │ train_cifar_3dc4d_00007 TERMINATED 256 8 0.00531861 2 1 123.043 2.09622 0.219 │ │ train_cifar_3dc4d_00008 TERMINATED 4 64 0.00165956 16 10 167.726 1.23279 0.5472 │ │ train_cifar_3dc4d_00009 TERMINATED 1 1 0.00962312 2 1 101.879 2.31671 0.099 │ ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ Best trial config: {'l1': 4, 'l2': 64, 'lr': 0.001659559313597945, 'batch_size': 16} Best trial final validation loss: 1.2327875532150268 Best trial final validation accuracy: 0.5472 (func pid=3882) Checkpoint successfully created at: Checkpoint(filesystem=local, path=/var/lib/ci-user/ray_results/train_cifar_2025-08-13_15-21-53/train_cifar_3dc4d_00006_6_batch_size=8,l1=4,l2=256,lr=0.0010_2025-08-13_15-21-53/checkpoint_000009) Best trial test set accuracy: 0.5461
If you run the code, an example output could look like this:
Number of trials: 10/10 (10 TERMINATED) +-----+--------------+------+------+-------------+--------+---------+------------+ | ... | batch_size | l1 | l2 | lr | iter | loss | accuracy | |-----+--------------+------+------+-------------+--------+---------+------------| | ... | 2 | 1 | 256 | 0.000668163 | 1 | 2.31479 | 0.0977 | | ... | 4 | 64 | 8 | 0.0331514 | 1 | 2.31605 | 0.0983 | | ... | 4 | 2 | 1 | 0.000150295 | 1 | 2.30755 | 0.1023 | | ... | 16 | 32 | 32 | 0.0128248 | 10 | 1.66912 | 0.4391 | | ... | 4 | 8 | 128 | 0.00464561 | 2 | 1.7316 | 0.3463 | | ... | 8 | 256 | 8 | 0.00031556 | 1 | 2.19409 | 0.1736 | | ... | 4 | 16 | 256 | 0.00574329 | 2 | 1.85679 | 0.3368 | | ... | 8 | 2 | 2 | 0.00325652 | 1 | 2.30272 | 0.0984 | | ... | 2 | 2 | 2 | 0.000342987 | 2 | 1.76044 | 0.292 | | ... | 4 | 64 | 32 | 0.003734 | 8 | 1.53101 | 0.4761 | +-----+--------------+------+------+-------------+--------+---------+------------+ Best trial config: {'l1': 64, 'l2': 32, 'lr': 0.0037339984519545164, 'batch_size': 4} Best trial final validation loss: 1.5310075663924216 Best trial final validation accuracy: 0.4761 Best trial test set accuracy: 0.4737
Most trials have been stopped early in order to avoid wasting resources. The best performing trial achieved a validation accuracy of about 47%, which could be confirmed on the test set.
So that’s it! You can now tune the parameters of your PyTorch models.
Total running time of the script: (4 minutes 36.001 seconds)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4