A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pytorch.org/docs/stable/generated/torch.tensor.html below:

torch.tensor — PyTorch 2.8 documentation

Constructs a tensor with no autograd history (also known as a “leaf tensor”, see Autograd mechanics) by copying data.

>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[ 0.1000,  1.2000],
        [ 2.2000,  3.1000],
        [ 4.9000,  5.2000]])

>>> torch.tensor([0, 1])  # Type inference on data
tensor([ 0,  1])

>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
...              dtype=torch.float64,
...              device=torch.device('cuda:0'))  # creates a double tensor on a CUDA device
tensor([[ 0.1111,  0.2222,  0.3333]], dtype=torch.float64, device='cuda:0')

>>> torch.tensor(3.14159)  # Create a zero-dimensional (scalar) tensor
tensor(3.1416)

>>> torch.tensor([])  # Create an empty tensor (of size (0,))
tensor([])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4