A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pytorch.org/docs/stable/generated/torch.stack.html below:

torch.stack — PyTorch 2.8 documentation

Concatenates a sequence of tensors along a new dimension.

All tensors need to be of the same size.

>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.3367,  0.1288,  0.2345],
        [ 0.2303, -1.1229, -0.1863]])
>>> torch.stack((x, x)) # same as torch.stack((x, x), dim=0)
tensor([[[ 0.3367,  0.1288,  0.2345],
         [ 0.2303, -1.1229, -0.1863]],

        [[ 0.3367,  0.1288,  0.2345],
         [ 0.2303, -1.1229, -0.1863]]])
>>> torch.stack((x, x)).size()
torch.Size([2, 2, 3])
>>> torch.stack((x, x), dim=1)
tensor([[[ 0.3367,  0.1288,  0.2345],
         [ 0.3367,  0.1288,  0.2345]],

        [[ 0.2303, -1.1229, -0.1863],
         [ 0.2303, -1.1229, -0.1863]]])
>>> torch.stack((x, x), dim=2)
tensor([[[ 0.3367,  0.3367],
         [ 0.1288,  0.1288],
         [ 0.2345,  0.2345]],

        [[ 0.2303,  0.2303],
         [-1.1229, -1.1229],
         [-0.1863, -0.1863]]])
>>> torch.stack((x, x), dim=-1)
tensor([[[ 0.3367,  0.3367],
         [ 0.1288,  0.1288],
         [ 0.2345,  0.2345]],

        [[ 0.2303,  0.2303],
         [-1.1229, -1.1229],
         [-0.1863, -0.1863]]])

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4