Bases: MessagePassing
The chebyshev spectral graph convolutional operator from the “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering” paper.
\[\mathbf{X}^{\prime} = \sum_{k=1}^{K} \mathbf{Z}^{(k)} \cdot \mathbf{\Theta}^{(k)}\]
where \(\mathbf{Z}^{(k)}\) is computed recursively by
\[ \begin{align}\begin{aligned}\mathbf{Z}^{(1)} &= \mathbf{X}\\\mathbf{Z}^{(2)} &= \mathbf{\hat{L}} \cdot \mathbf{X}\\\mathbf{Z}^{(k)} &= 2 \cdot \mathbf{\hat{L}} \cdot \mathbf{Z}^{(k-1)} - \mathbf{Z}^{(k-2)}\end{aligned}\end{align} \]
and \(\mathbf{\hat{L}}\) denotes the scaled and normalized Laplacian \(\frac{2\mathbf{L}}{\lambda_{\max}} - \mathbf{I}\).
in_channels (int) – Size of each input sample, or -1
to derive the size from the first input(s) to the forward method.
out_channels (int) – Size of each output sample.
K (int) – Chebyshev filter size \(K\).
normalization (str, optional) –
The normalization scheme for the graph Laplacian (default: "sym"
):
1. None
: No normalization \(\mathbf{L} = \mathbf{D} - \mathbf{A}\)
2. "sym"
: Symmetric normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}\)
3. "rw"
: Random-walk normalization \(\mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{A}\)
lambda_max
should be a torch.Tensor
of size [num_graphs]
in a mini-batch scenario and a scalar/zero-dimensional tensor when operating on single graphs. You can pre-compute lambda_max
via the torch_geometric.transforms.LaplacianLambdaMax
transform.
bias (bool, optional) – If set to False
, the layer will not learn an additive bias. (default: True
)
**kwargs (optional) – Additional arguments of torch_geometric.nn.conv.MessagePassing
.
input: node features \((|\mathcal{V}|, F_{in})\), edge indices \((2, |\mathcal{E}|)\), edge weights \((|\mathcal{E}|)\) (optional), batch vector \((|\mathcal{V}|)\) (optional), maximum lambda
value \((|\mathcal{G}|)\) (optional)
output: node features \((|\mathcal{V}|, F_{out})\)
Runs the forward pass of the module.
Resets all learnable parameters of the module.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4