This examples illustrates the better convergence of the translation invariance Sinkhorn algorithm proposed in [73] compared to the classical Sinkhorn algorithm.
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). Faster unbalanced optimal transport: Translation invariant sinkhorn and 1-d frank-wolfe. In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR.
# Author: Clément Bonet <clement.bonet@ensae.fr> # License: MIT License import numpy as np import matplotlib.pylab as pl import otSetting parameters Compute entropic kl-regularized UOT with Sinkhorn and Translation Invariant Sinkhorn
err_sinkhorn_uot = np.empty((n_iter, num_iter_max)) err_sinkhorn_uot_ti = np.empty((n_iter, num_iter_max)) for seed in range(n_iter): np.random.seed(seed) xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s) xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t) xs = np.concatenate((xs, (np.random.rand(n_noise, 2) - 4)), axis=0) xt = np.concatenate((xt, (np.random.rand(n_noise, 2) + 6)), axis=0) n = n + n_noise a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples # loss matrix M = ot.dist(xs, xt) M /= M.max() entropic_kl_uot, log_uot = ot.unbalanced.sinkhorn_unbalanced( a, b, M, reg, reg_m_kl, reg_type="kl", log=True, numItermax=num_iter_max, stopThr=0, ) entropic_kl_uot_ti, log_uot_ti = ot.unbalanced.sinkhorn_unbalanced( a, b, M, reg, reg_m_kl, reg_type="kl", method="sinkhorn_translation_invariant", log=True, numItermax=num_iter_max, stopThr=0, ) err_sinkhorn_uot[seed] = log_uot["err"] err_sinkhorn_uot_ti[seed] = log_uot_ti["err"]Plot the results
mean_sinkh = np.mean(err_sinkhorn_uot, axis=0) std_sinkh = np.std(err_sinkhorn_uot, axis=0) mean_sinkh_ti = np.mean(err_sinkhorn_uot_ti, axis=0) std_sinkh_ti = np.std(err_sinkhorn_uot_ti, axis=0) absc = list(range(num_iter_max)) pl.plot(absc, mean_sinkh, label="Sinkhorn") pl.fill_between(absc, mean_sinkh - 2 * std_sinkh, mean_sinkh + 2 * std_sinkh, alpha=0.5) pl.plot(absc, mean_sinkh_ti, label="Translation Invariant Sinkhorn") pl.fill_between( absc, mean_sinkh_ti - 2 * std_sinkh_ti, mean_sinkh_ti + 2 * std_sinkh_ti, alpha=0.5 ) pl.yscale("log") pl.legend() pl.xlabel("Number of Iterations") pl.ylabel(r"$\|u-v\|_\infty$") pl.grid(True) pl.show()
Total running time of the script: (0 minutes 1.998 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4