This example illustrates the computation of Unbalanced Optimal transport using a Kullback-Leibler relaxation.
# Author: Hicham Janati <hicham.janati@inria.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 4 import numpy as np import matplotlib.pylab as pl import ot import ot.plot from ot.datasets import make_1D_gauss as gaussGenerate data
n = 100 # nb bins # bin positions x = np.arange(n, dtype=np.float64) # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std b = gauss(n, m=60, s=10) # make distributions unbalanced b *= 5.0 # loss matrix M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1))) M /= M.max()Plot distributions and loss matrix
pl.figure(1, figsize=(6.4, 3)) pl.plot(x, a, "b", label="Source distribution") pl.plot(x, b, "r", label="Target distribution") pl.legend() # plot distributions and loss matrix pl.figure(2, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, M, "Cost matrix M")
(<Axes: >, <Axes: >, <Axes: >)Solve Unbalanced Sinkhorn
# Sinkhorn epsilon = 0.1 # entropy parameter alpha = 1.0 # Unbalanced KL relaxation parameter Gs = ot.unbalanced.sinkhorn_unbalanced(a, b, M, epsilon, alpha, verbose=True) pl.figure(3, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, Gs, "UOT matrix Sinkhorn") pl.show()plot the transported mass
pl.figure(4, figsize=(6.4, 3)) pl.plot(x, a, "b", label="Source distribution") pl.plot(x, b, "r", label="Target distribution") pl.fill(x, Gs.sum(1), "b", alpha=0.5, label="Transported source") pl.fill(x, Gs.sum(0), "r", alpha=0.5, label="Transported target") pl.legend(loc="upper right") pl.title("Distributions and transported mass for UOT")
Text(0.5, 1.0, 'Distributions and transported mass for UOT')
Total running time of the script: (0 minutes 0.259 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4