A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pythonot.github.io/auto_examples/sliced-wasserstein/plot_variance.html below:

Website Navigation


Sliced Wasserstein Distance on 2D distributions — POT Python Optimal Transport 0.9.5 documentation

Sliced Wasserstein Distance on 2D distributions

This example illustrates the computation of the sliced Wasserstein Distance as proposed in [31].

[31] Bonneel, Nicolas, et al. “Sliced and radon wasserstein barycenters of measures.” Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45

# Author: Adrien Corenflos <adrien.corenflos@aalto.fi>
#
# License: MIT License

# sphinx_gallery_thumbnail_number = 2

import matplotlib.pylab as pl
import numpy as np

import ot
Generate data
n = 200  # nb samples

mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])

mu_t = np.array([4, 4])
cov_t = np.array([[1, -0.8], [-0.8, 1]])

xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s)
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t)

a, b = np.ones((n,)) / n, np.ones((n,)) / n  # uniform distribution on samples
Plot data
pl.figure(1)
pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples")
pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples")
pl.legend(loc=0)
pl.title("Source and target distributions")
Text(0.5, 1.0, 'Source and target distributions')
Sliced Wasserstein distance for different seeds and number of projections Plot Sliced Wasserstein Distance

Total running time of the script: (0 minutes 2.014 seconds)

Gallery generated by Sphinx-Gallery


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4