Illustrates the use of the generic solver for regularized OT with user-designed regularization term. It uses Conditional gradient as in [6] and generalized Conditional Gradient as proposed in [5,7].
[5] N. Courty; R. Flamary; D. Tuia; A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PP, no.99, pp.1-1.
[6] Ferradans, S., Papadakis, N., Peyré, G., & Aujol, J. F. (2014). Regularized discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3), 1853-1882.
[7] Rakotomamonjy, A., Flamary, R., & Courty, N. (2015). Generalized conditional gradient: analysis of convergence and applications. arXiv preprint arXiv:1510.06567.
# sphinx_gallery_thumbnail_number = 5 import numpy as np import matplotlib.pylab as pl import ot import ot.plotGenerate data Solve EMD
(<Axes: >, <Axes: >, <Axes: >)Solve EMD with Frobenius norm regularization
It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|1.760578e-01|0.000000e+00|0.000000e+00 1|1.669467e-01|5.457501e-02|9.111116e-03 2|1.665639e-01|2.298130e-03|3.827855e-04 3|1.664378e-01|7.572776e-04|1.260396e-04 4|1.664077e-01|1.811855e-04|3.015066e-05 5|1.663912e-01|9.936787e-05|1.653393e-05 6|1.663852e-01|3.555826e-05|5.916369e-06 7|1.663814e-01|2.305693e-05|3.836245e-06 8|1.663785e-01|1.760450e-05|2.929009e-06 9|1.663767e-01|1.078011e-05|1.793559e-06 10|1.663751e-01|9.525192e-06|1.584755e-06 11|1.663737e-01|8.396466e-06|1.396951e-06 12|1.663727e-01|6.086938e-06|1.012700e-06 13|1.663720e-01|4.042609e-06|6.725769e-07 14|1.663713e-01|4.160914e-06|6.922568e-07 15|1.663707e-01|3.823502e-06|6.361187e-07 16|1.663702e-01|3.022440e-06|5.028438e-07 17|1.663697e-01|3.181249e-06|5.292634e-07 18|1.663692e-01|2.698532e-06|4.489527e-07 19|1.663687e-01|3.258253e-06|5.420712e-07 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 20|1.663682e-01|2.741118e-06|4.560349e-07 21|1.663678e-01|2.624135e-06|4.365715e-07 22|1.663673e-01|2.645179e-06|4.400714e-07 23|1.663670e-01|1.957237e-06|3.256196e-07 24|1.663666e-01|2.261541e-06|3.762450e-07 25|1.663663e-01|1.851305e-06|3.079948e-07 26|1.663660e-01|1.942296e-06|3.231320e-07 27|1.663657e-01|2.092896e-06|3.481860e-07 28|1.663653e-01|1.924361e-06|3.201470e-07 29|1.663651e-01|1.625455e-06|2.704189e-07 30|1.663648e-01|1.641123e-06|2.730250e-07 31|1.663645e-01|1.566666e-06|2.606377e-07 32|1.663643e-01|1.338514e-06|2.226810e-07 33|1.663641e-01|1.222711e-06|2.034152e-07 34|1.663639e-01|1.221805e-06|2.032642e-07 35|1.663637e-01|1.440781e-06|2.396935e-07 36|1.663634e-01|1.520091e-06|2.528875e-07 37|1.663632e-01|1.288193e-06|2.143080e-07 38|1.663630e-01|1.123055e-06|1.868347e-07 39|1.663628e-01|1.024487e-06|1.704365e-07 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 40|1.663627e-01|1.079606e-06|1.796061e-07 41|1.663625e-01|1.172093e-06|1.949922e-07 42|1.663623e-01|1.047880e-06|1.743277e-07 43|1.663621e-01|1.010577e-06|1.681217e-07 44|1.663619e-01|1.064438e-06|1.770820e-07 45|1.663618e-01|9.882375e-07|1.644049e-07 46|1.663616e-01|8.532647e-07|1.419505e-07 47|1.663615e-01|9.930189e-07|1.652001e-07 48|1.663613e-01|8.728955e-07|1.452161e-07 49|1.663612e-01|9.524214e-07|1.584459e-07 50|1.663610e-01|9.088418e-07|1.511958e-07 51|1.663609e-01|7.639430e-07|1.270902e-07 52|1.663608e-01|6.662611e-07|1.108397e-07 53|1.663607e-01|7.133700e-07|1.186767e-07 54|1.663605e-01|7.648141e-07|1.272349e-07 55|1.663604e-01|6.557516e-07|1.090911e-07 56|1.663603e-01|7.304213e-07|1.215131e-07 57|1.663602e-01|6.353809e-07|1.057021e-07 58|1.663601e-01|7.968279e-07|1.325603e-07 59|1.663600e-01|6.367159e-07|1.059240e-07 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 60|1.663599e-01|5.610790e-07|9.334102e-08 61|1.663598e-01|5.787466e-07|9.628015e-08 62|1.663596e-01|6.937777e-07|1.154166e-07 63|1.663596e-01|5.599432e-07|9.315190e-08 64|1.663595e-01|5.813048e-07|9.670555e-08 65|1.663594e-01|5.724600e-07|9.523409e-08 66|1.663593e-01|6.081892e-07|1.011779e-07 67|1.663592e-01|5.948732e-07|9.896260e-08 68|1.663591e-01|4.941833e-07|8.221188e-08 69|1.663590e-01|5.213739e-07|8.673523e-08 70|1.663589e-01|5.127355e-07|8.529811e-08 71|1.663588e-01|4.349251e-07|7.235363e-08 72|1.663588e-01|5.007084e-07|8.329722e-08 73|1.663587e-01|4.880265e-07|8.118744e-08 74|1.663586e-01|4.931950e-07|8.204723e-08 75|1.663585e-01|4.981309e-07|8.286832e-08 76|1.663584e-01|3.952959e-07|6.576082e-08 77|1.663584e-01|4.544857e-07|7.560750e-08 78|1.663583e-01|4.237579e-07|7.049564e-08 79|1.663582e-01|4.382386e-07|7.290460e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 80|1.663582e-01|3.646051e-07|6.065503e-08 81|1.663581e-01|4.197994e-07|6.983702e-08 82|1.663580e-01|4.072764e-07|6.775370e-08 83|1.663580e-01|3.994645e-07|6.645410e-08 84|1.663579e-01|4.842721e-07|8.056248e-08 85|1.663578e-01|3.276486e-07|5.450691e-08 86|1.663578e-01|3.737346e-07|6.217366e-08 87|1.663577e-01|4.282043e-07|7.123508e-08 88|1.663576e-01|4.020937e-07|6.689135e-08 89|1.663576e-01|3.431951e-07|5.709310e-08 90|1.663575e-01|3.052335e-07|5.077789e-08 91|1.663575e-01|3.500538e-07|5.823407e-08 92|1.663574e-01|3.063176e-07|5.095821e-08 93|1.663573e-01|3.576367e-07|5.949549e-08 94|1.663573e-01|3.224681e-07|5.364492e-08 95|1.663572e-01|3.673221e-07|6.110670e-08 96|1.663572e-01|3.635561e-07|6.048017e-08 97|1.663571e-01|3.527236e-07|5.867807e-08 98|1.663571e-01|2.788548e-07|4.638946e-08 99|1.663570e-01|2.727141e-07|4.536791e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 100|1.663570e-01|3.127278e-07|5.202445e-08 101|1.663569e-01|2.637504e-07|4.387670e-08 102|1.663569e-01|2.922750e-07|4.862195e-08 103|1.663568e-01|3.076454e-07|5.117891e-08 104|1.663568e-01|2.911509e-07|4.843492e-08 105|1.663567e-01|2.403398e-07|3.998215e-08 106|1.663567e-01|2.439790e-07|4.058755e-08 107|1.663567e-01|2.634542e-07|4.382735e-08 108|1.663566e-01|2.452203e-07|4.079401e-08 109|1.663566e-01|2.852991e-07|4.746137e-08 110|1.663565e-01|2.165490e-07|3.602434e-08 111|1.663565e-01|2.450250e-07|4.076149e-08 112|1.663564e-01|2.685294e-07|4.467159e-08 113|1.663564e-01|2.821800e-07|4.694245e-08 114|1.663564e-01|2.237390e-07|3.722040e-08 115|1.663563e-01|1.992842e-07|3.315219e-08 116|1.663563e-01|2.166739e-07|3.604506e-08 117|1.663563e-01|2.086064e-07|3.470297e-08 118|1.663562e-01|2.435945e-07|4.052346e-08 119|1.663562e-01|2.292497e-07|3.813711e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 120|1.663561e-01|2.366209e-07|3.936334e-08 121|1.663561e-01|2.138746e-07|3.557935e-08 122|1.663561e-01|2.009637e-07|3.343153e-08 123|1.663560e-01|2.386258e-07|3.969683e-08 124|1.663560e-01|1.927442e-07|3.206415e-08 125|1.663560e-01|2.081681e-07|3.463000e-08 126|1.663559e-01|1.759123e-07|2.926406e-08 127|1.663559e-01|1.890771e-07|3.145409e-08 128|1.663559e-01|1.971315e-07|3.279398e-08 129|1.663558e-01|2.101983e-07|3.496771e-08 130|1.663558e-01|2.035645e-07|3.386414e-08 131|1.663558e-01|1.984492e-07|3.301317e-08 132|1.663557e-01|1.849064e-07|3.076024e-08 133|1.663557e-01|1.795703e-07|2.987255e-08 134|1.663557e-01|1.624087e-07|2.701762e-08 135|1.663557e-01|1.689557e-07|2.810673e-08 136|1.663556e-01|1.644308e-07|2.735399e-08 137|1.663556e-01|1.618007e-07|2.691644e-08 138|1.663556e-01|1.483013e-07|2.467075e-08 139|1.663555e-01|1.708771e-07|2.842636e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 140|1.663555e-01|2.013847e-07|3.350146e-08 141|1.663555e-01|1.721217e-07|2.863339e-08 142|1.663554e-01|2.027911e-07|3.373540e-08 143|1.663554e-01|1.764565e-07|2.935449e-08 144|1.663554e-01|1.677151e-07|2.790030e-08 145|1.663554e-01|1.351982e-07|2.249094e-08 146|1.663553e-01|1.423360e-07|2.367836e-08 147|1.663553e-01|1.541112e-07|2.563722e-08 148|1.663553e-01|1.491601e-07|2.481358e-08 149|1.663553e-01|1.466407e-07|2.439446e-08 150|1.663552e-01|1.801524e-07|2.996929e-08 151|1.663552e-01|1.714107e-07|2.851507e-08 152|1.663552e-01|1.491257e-07|2.480784e-08 153|1.663552e-01|1.513799e-07|2.518282e-08 154|1.663551e-01|1.354539e-07|2.253345e-08 155|1.663551e-01|1.233818e-07|2.052519e-08 156|1.663551e-01|1.576219e-07|2.622121e-08 157|1.663551e-01|1.452791e-07|2.416792e-08 158|1.663550e-01|1.262867e-07|2.100843e-08 159|1.663550e-01|1.316379e-07|2.189863e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 160|1.663550e-01|1.295447e-07|2.155041e-08 161|1.663550e-01|1.283286e-07|2.134810e-08 162|1.663550e-01|1.569222e-07|2.610479e-08 163|1.663549e-01|1.172942e-07|1.951247e-08 164|1.663549e-01|1.399809e-07|2.328651e-08 165|1.663549e-01|1.229432e-07|2.045221e-08 166|1.663549e-01|1.326191e-07|2.206184e-08 167|1.663548e-01|1.209694e-07|2.012384e-08 168|1.663548e-01|1.372136e-07|2.282614e-08 169|1.663548e-01|1.338395e-07|2.226484e-08 170|1.663548e-01|1.416497e-07|2.356410e-08 171|1.663548e-01|1.298576e-07|2.160242e-08 172|1.663547e-01|1.190590e-07|1.980603e-08 173|1.663547e-01|1.167083e-07|1.941497e-08 174|1.663547e-01|1.069425e-07|1.779038e-08 175|1.663547e-01|1.217780e-07|2.025834e-08 176|1.663547e-01|1.140754e-07|1.897697e-08 177|1.663546e-01|1.160707e-07|1.930890e-08 178|1.663546e-01|1.101798e-07|1.832892e-08 179|1.663546e-01|1.114904e-07|1.854694e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 180|1.663546e-01|1.064022e-07|1.770049e-08 181|1.663546e-01|9.258231e-08|1.540149e-08 182|1.663546e-01|1.213120e-07|2.018080e-08 183|1.663545e-01|1.164296e-07|1.936859e-08 184|1.663545e-01|1.188762e-07|1.977559e-08 185|1.663545e-01|9.394153e-08|1.562760e-08 186|1.663545e-01|1.028656e-07|1.711216e-08 187|1.663545e-01|1.115348e-07|1.855431e-08 188|1.663544e-01|9.768310e-08|1.625002e-08 189|1.663544e-01|1.021806e-07|1.699820e-08 190|1.663544e-01|1.086303e-07|1.807113e-08 191|1.663544e-01|9.879008e-08|1.643416e-08 192|1.663544e-01|1.050210e-07|1.747071e-08 193|1.663544e-01|1.002463e-07|1.667641e-08 194|1.663543e-01|1.062747e-07|1.767925e-08 195|1.663543e-01|9.348538e-08|1.555170e-08 196|1.663543e-01|7.992512e-08|1.329589e-08 197|1.663543e-01|9.558020e-08|1.590018e-08 198|1.663543e-01|9.993772e-08|1.662507e-08 199|1.663543e-01|8.588499e-08|1.428734e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 200|1.663543e-01|8.737134e-08|1.453459e-08 (<Axes: >, <Axes: >, <Axes: >)Solve EMD with entropic regularization
def f(G): return np.sum(G * np.log(G)) def df(G): return np.log(G) + 1.0 reg = 1e-3 Ge = ot.optim.cg(a, b, M, reg, f, df, verbose=True) pl.figure(3, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, Ge, "OT matrix Entrop. reg")
It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|1.692289e-01|0.000000e+00|0.000000e+00 1|1.617643e-01|4.614437e-02|7.464513e-03 2|1.612633e-01|3.106799e-03|5.010127e-04 3|1.611082e-01|9.630037e-04|1.551478e-04 4|1.610190e-01|5.537206e-04|8.915955e-05 5|1.610030e-01|9.967414e-05|1.604783e-05 6|1.609963e-01|4.142905e-05|6.669924e-06 7|1.609932e-01|1.949356e-05|3.138329e-06 8|1.609900e-01|1.989585e-05|3.203033e-06 9|1.609889e-01|6.753548e-06|1.087246e-06 10|1.609818e-01|4.366410e-05|7.029127e-06 11|1.609805e-01|8.458840e-06|1.361708e-06 12|1.609691e-01|7.044052e-05|1.133875e-05 13|1.609281e-01|2.550021e-04|4.103701e-05 14|1.609163e-01|7.346394e-05|1.182154e-05 15|1.609087e-01|4.701438e-05|7.565024e-06 16|1.609031e-01|3.465400e-05|5.575938e-06 17|1.609013e-01|1.163497e-05|1.872081e-06 18|1.608860e-01|9.495884e-05|1.527755e-05 19|1.608805e-01|3.394035e-05|5.460343e-06 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 20|1.608774e-01|1.937884e-05|3.117618e-06 21|1.608761e-01|8.413843e-06|1.353586e-06 22|1.608734e-01|1.680885e-05|2.704097e-06 23|1.608707e-01|1.655145e-05|2.662643e-06 24|1.608673e-01|2.144001e-05|3.448996e-06 25|1.608664e-01|4.985796e-06|8.020473e-07 26|1.608637e-01|1.683119e-05|2.707527e-06 27|1.608636e-01|9.881179e-07|1.589522e-07 28|1.608632e-01|2.514784e-06|4.045361e-07 29|1.608600e-01|1.986679e-05|3.195771e-06 30|1.608433e-01|1.039776e-04|1.672410e-05 31|1.608364e-01|4.291730e-05|6.902662e-06 32|1.608330e-01|2.106010e-05|3.387158e-06 33|1.608329e-01|5.732018e-07|9.218969e-08 34|1.608313e-01|9.490397e-06|1.526353e-06 35|1.608300e-01|8.211369e-06|1.320635e-06 36|1.608243e-01|3.532462e-05|5.681058e-06 37|1.608237e-01|3.839356e-06|6.174595e-07 38|1.608224e-01|8.249817e-06|1.326755e-06 39|1.608215e-01|5.580337e-06|8.974381e-07 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 40|1.608165e-01|3.114761e-05|5.009049e-06 41|1.608117e-01|2.961099e-05|4.761794e-06 42|1.608089e-01|1.733572e-05|2.787738e-06 43|1.608088e-01|7.456995e-07|1.199151e-07 44|1.608076e-01|7.513893e-06|1.208291e-06 45|1.608073e-01|1.830771e-06|2.944014e-07 46|1.608059e-01|8.658928e-06|1.392407e-06 47|1.608024e-01|2.224327e-05|3.576771e-06 48|1.608023e-01|3.366487e-07|5.413388e-08 49|1.607999e-01|1.522281e-05|2.447826e-06 50|1.607966e-01|2.023292e-05|3.253384e-06 51|1.607963e-01|1.606772e-06|2.583631e-07 52|1.607963e-01|2.065525e-07|3.321288e-08 53|1.607889e-01|4.577581e-05|7.360245e-06 54|1.607889e-01|6.259349e-09|1.006434e-09 55|1.607874e-01|9.819859e-06|1.578909e-06 56|1.607832e-01|2.610088e-05|4.196582e-06 57|1.607793e-01|2.390504e-05|3.843436e-06 58|1.607764e-01|1.833813e-05|2.948338e-06 59|1.607737e-01|1.695521e-05|2.725951e-06 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 60|1.607714e-01|1.401053e-05|2.252492e-06 61|1.607698e-01|9.920917e-06|1.594984e-06 62|1.607680e-01|1.105028e-05|1.776532e-06 63|1.607671e-01|5.665211e-06|9.107797e-07 64|1.607645e-01|1.649076e-05|2.651129e-06 65|1.607635e-01|6.071597e-06|9.760911e-07 66|1.607627e-01|4.694297e-06|7.546680e-07 67|1.607609e-01|1.162297e-05|1.868519e-06 68|1.607595e-01|8.520224e-06|1.369707e-06 69|1.607580e-01|9.496936e-06|1.526708e-06 70|1.607579e-01|7.288742e-07|1.171723e-07 71|1.607566e-01|7.948458e-06|1.277767e-06 72|1.607558e-01|4.528923e-06|7.280509e-07 73|1.607556e-01|1.361733e-06|2.189063e-07 74|1.607554e-01|1.569794e-06|2.523528e-07 75|1.607551e-01|1.652715e-06|2.656824e-07 76|1.607541e-01|6.206694e-06|9.977516e-07 77|1.607537e-01|2.383515e-06|3.831589e-07 78|1.607525e-01|7.698774e-06|1.237597e-06 79|1.607524e-01|4.588453e-07|7.376049e-08 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 80|1.607514e-01|6.547220e-06|1.052475e-06 81|1.607513e-01|1.333798e-07|2.144099e-08 82|1.607503e-01|6.408669e-06|1.030196e-06 83|1.607493e-01|6.369491e-06|1.023891e-06 84|1.607491e-01|9.632479e-07|1.548413e-07 85|1.607485e-01|3.751148e-06|6.029916e-07 86|1.607484e-01|1.067772e-06|1.716426e-07 87|1.607478e-01|3.239567e-06|5.207534e-07 88|1.607475e-01|2.118543e-06|3.405506e-07 89|1.607470e-01|3.401870e-06|5.468402e-07 90|1.607460e-01|5.854116e-06|9.410259e-07 91|1.607460e-01|8.233754e-08|1.323543e-08 92|1.607445e-01|9.604616e-06|1.543889e-06 93|1.607435e-01|5.976633e-06|9.607049e-07 94|1.607426e-01|5.611033e-06|9.019320e-07 95|1.607424e-01|9.646093e-07|1.550537e-07 96|1.607424e-01|4.210344e-09|6.767810e-10 (<Axes: >, <Axes: >, <Axes: >)Solve EMD with Frobenius norm + entropic regularization
def f(G): return 0.5 * np.sum(G**2) def df(G): return G reg1 = 1e-3 reg2 = 1e-1 Gel2 = ot.optim.gcg(a, b, M, reg1, reg2, f, df, verbose=True) pl.figure(4, figsize=(5, 5)) ot.plot.plot1D_mat(a, b, Gel2, "OT entropic + matrix Frob. reg") pl.show()
It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|1.693084e-01|0.000000e+00|0.000000e+00 /home/circleci/project/ot/bregman/_sinkhorn.py:667: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn( 1|1.610202e-01|5.147342e-02|8.288260e-03 2|1.610179e-01|1.406304e-05|2.264402e-06 3|1.610174e-01|3.352083e-06|5.397436e-07 4|1.610174e-01|0.000000e+00|0.000000e+00
Comparison of the OT matrices
nvisu = 40 pl.figure(5, figsize=(10, 4)) pl.subplot(2, 2, 1) pl.imshow(G0[:nvisu, :]) pl.axis("off") pl.title("Exact OT") pl.subplot(2, 2, 2) pl.imshow(Gl2[:nvisu, :]) pl.axis("off") pl.title("Frobenius reg.") pl.subplot(2, 2, 3) pl.imshow(Ge[:nvisu, :]) pl.axis("off") pl.title("Entropic reg.") pl.subplot(2, 2, 4) pl.imshow(Gel2[:nvisu, :]) pl.axis("off") pl.title("Entropic + Frobenius reg.")
Text(0.5, 1.0, 'Entropic + Frobenius reg.')
Total running time of the script: (0 minutes 0.950 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4