Shows how to compute multiple Wasserstein and Sinkhorn with two different ground metrics and plot their values for different distributions.
# Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import numpy as np import matplotlib.pylab as pl import ot from ot.datasets import make_1D_gauss as gaussGenerate data
n = 100 # nb bins n_target = 20 # nb target distributions # bin positions x = np.arange(n, dtype=np.float64) lst_m = np.linspace(20, 90, n_target) # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std B = np.zeros((n, n_target)) for i, m in enumerate(lst_m): B[:, i] = gauss(n, m=m, s=5) # loss matrix and normalization M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), "euclidean") M /= M.max() * 0.1 M2 = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)), "sqeuclidean") M2 /= M2.max() * 0.1Plot data
pl.figure(1) pl.subplot(2, 1, 1) pl.plot(x, a, "r", label="Source distribution") pl.title("Source distribution") pl.subplot(2, 1, 2) for i in range(n_target): pl.plot(x, B[:, i], "b", alpha=i / n_target) pl.plot(x, B[:, -1], "b", label="Target distributions") pl.title("Target distributions") pl.tight_layout()Compute EMD for the different losses
d_emd = ot.emd2(a, B, M) # direct computation of OT loss d_emd2 = ot.emd2(a, B, M2) # direct computation of OT loss with metric M2 d_tv = [np.sum(abs(a - B[:, i])) for i in range(n_target)] pl.figure(2) pl.subplot(2, 1, 1) pl.plot(x, a, "r", label="Source distribution") pl.title("Distributions") for i in range(n_target): pl.plot(x, B[:, i], "b", alpha=i / n_target) pl.plot(x, B[:, -1], "b", label="Target distributions") pl.ylim((-0.01, 0.13)) pl.xticks(()) pl.legend() pl.subplot(2, 1, 2) pl.plot(d_emd, label="Euclidean OT") pl.plot(d_emd2, label="Squared Euclidean OT") pl.plot(d_tv, label="Total Variation (TV)") # pl.xlim((-7,23)) pl.xlabel("Displacement") pl.title("Divergences") pl.legend()
<matplotlib.legend.Legend object at 0x7f590d5b5960>Compute Sinkhorn for the different losses
reg = 1e-1 d_sinkhorn = ot.sinkhorn2(a, B, M, reg) d_sinkhorn2 = ot.sinkhorn2(a, B, M2, reg) pl.figure(3) pl.clf() pl.subplot(2, 1, 1) pl.plot(x, a, "r", label="Source distribution") pl.title("Distributions") for i in range(n_target): pl.plot(x, B[:, i], "b", alpha=i / n_target) pl.plot(x, B[:, -1], "b", label="Target distributions") pl.ylim((-0.01, 0.13)) pl.xticks(()) pl.legend() pl.subplot(2, 1, 2) pl.plot(d_emd, label="Euclidean OT") pl.plot(d_emd2, label="Squared Euclidean OT") pl.plot(d_sinkhorn, "+", label="Euclidean Sinkhorn") pl.plot(d_sinkhorn2, "+", label="Squared Euclidean Sinkhorn") pl.plot(d_tv, label="Total Variation (TV)") # pl.xlim((-7,23)) pl.xlabel("Displacement") pl.title("Divergences") pl.legend() pl.show()
Total running time of the script: (0 minutes 0.501 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4