2D OT on empirical distribution with different ground metric.
Stole the figure idea from Fig. 1 and 2 in https://arxiv.org/pdf/1706.07650.pdf
# Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pylab as pl import ot import ot.plotDataset 1 : uniform sampling
n = 20 # nb samples xs = np.zeros((n, 2)) xs[:, 0] = np.arange(n) + 1 xs[:, 1] = (np.arange(n) + 1) * -0.001 # to make it strictly convex... xt = np.zeros((n, 2)) xt[:, 1] = np.arange(n) + 1 a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples # loss matrix M1 = ot.dist(xs, xt, metric="euclidean") M1 /= M1.max() # loss matrix M2 = ot.dist(xs, xt, metric="sqeuclidean") M2 /= M2.max() # loss matrix Mp = ot.dist(xs, xt, metric="cityblock") Mp /= Mp.max() # Data pl.figure(1, figsize=(7, 3)) pl.clf() pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") pl.title("Source and target distributions") # Cost matrices pl.figure(2, figsize=(7, 3)) pl.subplot(1, 3, 1) pl.imshow(M1, interpolation="nearest") pl.title("Euclidean cost") pl.subplot(1, 3, 2) pl.imshow(M2, interpolation="nearest") pl.title("Squared Euclidean cost") pl.subplot(1, 3, 3) pl.imshow(Mp, interpolation="nearest") pl.title("L1 (cityblock cost") pl.tight_layout()Dataset 1 : Plot OT Matrices
G1 = ot.emd(a, b, M1) G2 = ot.emd(a, b, M2) Gp = ot.emd(a, b, Mp) # OT matrices pl.figure(3, figsize=(7, 3)) pl.subplot(1, 3, 1) ot.plot.plot2D_samples_mat(xs, xt, G1, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT Euclidean") pl.subplot(1, 3, 2) ot.plot.plot2D_samples_mat(xs, xt, G2, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT squared Euclidean") pl.subplot(1, 3, 3) ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT L1 (cityblock)") pl.tight_layout() pl.show()Dataset 2 : Partial circle
n = 20 # nb samples xtot = np.zeros((n + 1, 2)) xtot[:, 0] = np.cos((np.arange(n + 1) + 1.0) * 0.8 / (n + 2) * 2 * np.pi) xtot[:, 1] = np.sin((np.arange(n + 1) + 1.0) * 0.8 / (n + 2) * 2 * np.pi) xs = xtot[:n, :] xt = xtot[1:, :] a, b = ot.unif(n), ot.unif(n) # uniform distribution on samples # loss matrix M1 = ot.dist(xs, xt, metric="euclidean") M1 /= M1.max() # loss matrix M2 = ot.dist(xs, xt, metric="sqeuclidean") M2 /= M2.max() # loss matrix Mp = ot.dist(xs, xt, metric="cityblock") Mp /= Mp.max() # Data pl.figure(4, figsize=(7, 3)) pl.clf() pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") pl.title("Source and target distributions") # Cost matrices pl.figure(5, figsize=(7, 3)) pl.subplot(1, 3, 1) pl.imshow(M1, interpolation="nearest") pl.title("Euclidean cost") pl.subplot(1, 3, 2) pl.imshow(M2, interpolation="nearest") pl.title("Squared Euclidean cost") pl.subplot(1, 3, 3) pl.imshow(Mp, interpolation="nearest") pl.title("L1 (cityblock) cost") pl.tight_layout()Dataset 2 : Plot OT Matrices
G1 = ot.emd(a, b, M1) G2 = ot.emd(a, b, M2) Gp = ot.emd(a, b, Mp) # OT matrices pl.figure(6, figsize=(7, 3)) pl.subplot(1, 3, 1) ot.plot.plot2D_samples_mat(xs, xt, G1, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT Euclidean") pl.subplot(1, 3, 2) ot.plot.plot2D_samples_mat(xs, xt, G2, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT squared Euclidean") pl.subplot(1, 3, 3) ot.plot.plot2D_samples_mat(xs, xt, Gp, c=[0.5, 0.5, 1]) pl.plot(xs[:, 0], xs[:, 1], "+b", label="Source samples") pl.plot(xt[:, 0], xt[:, 1], "xr", label="Target samples") pl.axis("equal") # pl.legend(loc=0) pl.title("OT L1 (cityblock)") pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 0.994 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4