In this example we plot the logo of the POT toolbox.
This logo is that it is done 100% in Python and generated using matplotlib and plotting the solution of the EMD solver from POT.
# Author: Remi Flamary <remi.flamary@polytechnique.edu> # # License: MIT License # sphinx_gallery_thumbnail_number = 1
import numpy as np import matplotlib.pyplot as pl import otData for logo
# Letter P p1 = np.array( [ [0, 6.0], [0, 5], [0, 4], [0, 3], [0, 2], [0, 1], ] ) p2 = np.array( [ [1.5, 6], [2, 4], [2, 5], [1.5, 3], [0.5, 2], [0.5, 1], ] ) # Letter O o1 = np.array( [ [0, 6.0], [-1, 5], [-1.5, 4], [-1.5, 3], [-1, 2], [0, 1], ] ) o2 = np.array( [ [1, 6.0], [2, 5], [2.5, 4], [2.5, 3], [2, 2], [1, 1], ] ) # Scaling and translation for letter O o1[:, 0] += 6.4 o2[:, 0] += 6.4 o1[:, 0] *= 0.6 o2[:, 0] *= 0.6 # Letter T t1 = np.array( [ [-1, 6.0], [-1, 5], [0, 4], [0, 3], [0, 2], [0, 1], ] ) t2 = np.array( [ [1.5, 6.0], [1.5, 5], [0.5, 4], [0.5, 3], [0.5, 2], [0.5, 1], ] ) # Translating the T t1[:, 0] += 7.1 t2[:, 0] += 7.1 # Concatenate all letters x1 = np.concatenate((p1, o1, t1), axis=0) x2 = np.concatenate((p2, o2, t2), axis=0) # Horizontal and vertical scaling sx = 1.0 sy = 0.5 x1[:, 0] *= sx x1[:, 1] *= sy x2[:, 0] *= sx x2[:, 1] *= syPlot the logo (clear background)
# Solve OT problem between the points M = ot.dist(x1, x2, metric="euclidean") T = ot.emd([], [], M) pl.figure(1, (3.5, 1.1)) pl.clf() # plot the OT plan for i in range(M.shape[0]): for j in range(M.shape[1]): if T[i, j] > 1e-8: pl.plot( [x1[i, 0], x2[j, 0]], [x1[i, 1], x2[j, 1]], color="k", alpha=0.6, linewidth=3, zorder=1, ) # plot the samples pl.plot(x1[:, 0], x1[:, 1], "o", markerfacecolor="C3", markeredgecolor="k") pl.plot(x2[:, 0], x2[:, 1], "o", markerfacecolor="b", markeredgecolor="k") pl.axis("equal") pl.axis("off") # Save logo file # pl.savefig('logo.svg', dpi=150, transparent=True, bbox_inches='tight') # pl.savefig('logo.png', dpi=150, transparent=True, bbox_inches='tight')
(np.float64(-0.43), np.float64(9.03), np.float64(0.375), np.float64(3.125))Plot the logo (dark background)
pl.figure(2, (3.5, 1.1), facecolor="darkgray") pl.clf() # plot the OT plan for i in range(M.shape[0]): for j in range(M.shape[1]): if T[i, j] > 1e-8: pl.plot( [x1[i, 0], x2[j, 0]], [x1[i, 1], x2[j, 1]], color="w", alpha=0.8, linewidth=3, zorder=1, ) # plot the samples pl.plot(x1[:, 0], x1[:, 1], "o", markerfacecolor="w", markeredgecolor="w") pl.plot(x2[:, 0], x2[:, 1], "o", markerfacecolor="w", markeredgecolor="w") pl.axis("equal") pl.axis("off") # Save logo file # pl.savefig('logo_dark.svg', dpi=150, transparent=True, bbox_inches='tight') # pl.savefig('logo_dark.png', dpi=150, transparent=True, bbox_inches='tight')
(np.float64(-0.43), np.float64(9.03), np.float64(0.375), np.float64(3.125))
Total running time of the script: (0 minutes 0.053 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4