This example is designed to show how to use the semi-relaxed Gromov-Wasserstein and the semi-relaxed Fused Gromov-Wasserstein divergences.
sr(F)GW between two graphs G1 and G2 searches for a reweighing of the nodes of G2 at a minimal (F)GW distance from G1.
First, we generate two graphs following Stochastic Block Models, then show how to compute their srGW matchings and illustrate them. These graphs are then endowed with node features and we follow the same process with srFGW.
[48] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, Nicolas Courty. “Semi-relaxed Gromov-Wasserstein divergence and applications on graphs” International Conference on Learning Representations (ICLR), 2021.
Generate two graphs following Stochastic Block models of 2 and 3 clusters.N2 = 20 # 2 communities N3 = 30 # 3 communities p2 = [[1.0, 0.1], [0.1, 0.9]] p3 = [[1.0, 0.1, 0.0], [0.1, 0.95, 0.1], [0.0, 0.1, 0.9]] G2 = sbm(seed=0, sizes=[N2 // 2, N2 // 2], p=p2) G3 = sbm(seed=0, sizes=[N3 // 3, N3 // 3, N3 // 3], p=p3) C2 = networkx.to_numpy_array(G2) C3 = networkx.to_numpy_array(G3) h2 = np.ones(C2.shape[0]) / C2.shape[0] h3 = np.ones(C3.shape[0]) / C3.shape[0] # Add weights on the edges for visualization later on weight_intra_G2 = 5 weight_inter_G2 = 0.5 weight_intra_G3 = 1.0 weight_inter_G3 = 1.5 weightedG2 = networkx.Graph() part_G2 = [G2.nodes[i]["block"] for i in range(N2)] for node in G2.nodes(): weightedG2.add_node(node) for i, j in G2.edges(): if part_G2[i] == part_G2[j]: weightedG2.add_edge(i, j, weight=weight_intra_G2) else: weightedG2.add_edge(i, j, weight=weight_inter_G2) weightedG3 = networkx.Graph() part_G3 = [G3.nodes[i]["block"] for i in range(N3)] for node in G3.nodes(): weightedG3.add_node(node) for i, j in G3.edges(): if part_G3[i] == part_G3[j]: weightedG3.add_edge(i, j, weight=weight_intra_G3) else: weightedG3.add_edge(i, j, weight=weight_inter_G3)Compute their semi-relaxed Gromov-Wasserstein divergences
# 0) GW(C2, h2, C3, h3) for reference OT, log = gromov_wasserstein(C2, C3, h2, h3, symmetric=True, log=True) gw = log["gw_dist"] # 1) srGW(C2, h2, C3) OT_23, log_23 = semirelaxed_gromov_wasserstein( C2, C3, h2, symmetric=True, log=True, G0=None ) srgw_23 = log_23["srgw_dist"] # 2) srGW(C3, h3, C2) OT_32, log_32 = semirelaxed_gromov_wasserstein( C3, C2, h3, symmetric=None, log=True, G0=OT.T ) srgw_32 = log_32["srgw_dist"] print("GW(C2, C3) = ", gw) print("srGW(C2, h2, C3) = ", srgw_23) print("srGW(C3, h3, C2) = ", srgw_32)
GW(C2, C3) = 0.24722222222222215 srGW(C2, h2, C3) = 0.07000000000000006 srGW(C3, h3, C2) = 0.17111111111111116Visualization of the semi-relaxed Gromov-Wasserstein matchings
We color nodes of the graph on the right - then project its node colors based on the optimal transport plan from the srGW matching
def draw_graph( G, C, nodes_color_part, Gweights=None, pos=None, edge_color="black", node_size=None, shiftx=0, seed=0, ): if pos is None: pos = networkx.spring_layout(G, scale=1.0, seed=seed) if shiftx != 0: for k, v in pos.items(): v[0] = v[0] + shiftx alpha_edge = 0.7 width_edge = 1.8 if Gweights is None: networkx.draw_networkx_edges( G, pos, width=width_edge, alpha=alpha_edge, edge_color=edge_color ) else: # We make more visible connections between activated nodes n = len(Gweights) edgelist_activated = [] edgelist_deactivated = [] for i in range(n): for j in range(n): if Gweights[i] * Gweights[j] * C[i, j] > 0: edgelist_activated.append((i, j)) elif C[i, j] > 0: edgelist_deactivated.append((i, j)) networkx.draw_networkx_edges( G, pos, edgelist=edgelist_activated, width=width_edge, alpha=alpha_edge, edge_color=edge_color, ) networkx.draw_networkx_edges( G, pos, edgelist=edgelist_deactivated, width=width_edge, alpha=0.1, edge_color=edge_color, ) if Gweights is None: for node, node_color in enumerate(nodes_color_part): networkx.draw_networkx_nodes( G, pos, nodelist=[node], node_size=node_size, alpha=1, node_color=node_color, ) else: scaled_Gweights = Gweights / (0.5 * Gweights.max()) nodes_size = node_size * scaled_Gweights for node, node_color in enumerate(nodes_color_part): networkx.draw_networkx_nodes( G, pos, nodelist=[node], node_size=nodes_size[node], alpha=1, node_color=node_color, ) return pos def draw_transp_colored_srGW( G1, C1, G2, C2, part_G1, p1, p2, T, pos1=None, pos2=None, shiftx=4, switchx=False, node_size=70, seed_G1=0, seed_G2=0, ): starting_color = 0 # get graphs partition and their coloring part1 = part_G1.copy() unique_colors = ["C%s" % (starting_color + i) for i in np.unique(part1)] nodes_color_part1 = [] for cluster in part1: nodes_color_part1.append(unique_colors[cluster]) nodes_color_part2 = [] # T: getting colors assignment from argmin of columns for i in range(len(G2.nodes())): j = np.argmax(T[:, i]) nodes_color_part2.append(nodes_color_part1[j]) pos1 = draw_graph( G1, C1, nodes_color_part1, Gweights=p1, pos=pos1, node_size=node_size, shiftx=0, seed=seed_G1, ) pos2 = draw_graph( G2, C2, nodes_color_part2, Gweights=p2, pos=pos2, node_size=node_size, shiftx=shiftx, seed=seed_G2, ) for k1, v1 in pos1.items(): for k2, v2 in pos2.items(): if T[k1, k2] > 0: pl.plot( [pos1[k1][0], pos2[k2][0]], [pos1[k1][1], pos2[k2][1]], "-", lw=0.8, alpha=0.5, color=nodes_color_part1[k1], ) return pos1, pos2 node_size = 40 fontsize = 10 seed_G2 = 0 seed_G3 = 4 pl.figure(1, figsize=(8, 2.5)) pl.clf() pl.subplot(121) pl.axis("off") pl.axis pl.title( r"srGW$(\mathbf{C_2},\mathbf{h_2},\mathbf{C_3}) =%s$" % (np.round(srgw_23, 3)), fontsize=fontsize, ) hbar2 = OT_23.sum(axis=0) pos1, pos2 = draw_transp_colored_srGW( weightedG2, C2, weightedG3, C3, part_G2, p1=None, p2=hbar2, T=OT_23, shiftx=1.5, node_size=node_size, seed_G1=seed_G2, seed_G2=seed_G3, ) pl.subplot(122) pl.axis("off") hbar3 = OT_32.sum(axis=0) pl.title( r"srGW$(\mathbf{C_3}, \mathbf{h_3},\mathbf{C_2}) =%s$" % (np.round(srgw_32, 3)), fontsize=fontsize, ) pos1, pos2 = draw_transp_colored_srGW( weightedG3, C3, weightedG2, C2, part_G3, p1=None, p2=hbar3, T=OT_32, pos1=pos2, pos2=pos1, shiftx=3.0, node_size=node_size, seed_G1=0, seed_G2=0, ) pl.tight_layout() pl.show()Add node features Compute their semi-relaxed Fused Gromov-Wasserstein divergences
alpha = 0.5 # Compute pairwise euclidean distance between node features M = (F2**2).dot(np.ones((1, N3))) + np.ones((N2, 1)).dot((F3**2).T) - 2 * F2.dot(F3.T) # 0) FGW_alpha(C2, F2, h2, C3, F3, h3) for reference OT, log = fused_gromov_wasserstein( M, C2, C3, h2, h3, symmetric=True, alpha=alpha, log=True ) fgw = log["fgw_dist"] # 1) srFGW(C2, F2, h2, C3, F3) OT_23, log_23 = semirelaxed_fused_gromov_wasserstein( M, C2, C3, h2, symmetric=True, alpha=0.5, log=True, G0=None ) srfgw_23 = log_23["srfgw_dist"] # 2) srFGW(C3, F3, h3, C2, F2) OT_32, log_32 = semirelaxed_fused_gromov_wasserstein( M.T, C3, C2, h3, symmetric=None, alpha=alpha, log=True, G0=None ) srfgw_32 = log_32["srfgw_dist"] print("FGW(C2, F2, C3, F3) = ", fgw) print("srGW(C2, F2, h2, C3, F3) = ", srfgw_23) print("srGW(C3, F3, h3, C2, F2) = ", srfgw_32)
FGW(C2, F2, C3, F3) = 0.3778254858275072 srGW(C2, F2, h2, C3, F3) = 0.03757413947207429 srGW(C3, F3, h3, C2, F2) = 0.23454191747683045Visualization of the semi-relaxed Fused Gromov-Wasserstein matchings
We color nodes of the graph on the right - then project its node colors based on the optimal transport plan from the srFGW matching NB: colors refer to clusters - not to node features
pl.figure(2, figsize=(8, 2.5)) pl.clf() pl.subplot(121) pl.axis("off") pl.axis pl.title( r"srFGW$(\mathbf{C_2},\mathbf{F_2},\mathbf{h_2},\mathbf{C_3},\mathbf{F_3}) =%s$" % (np.round(srfgw_23, 3)), fontsize=fontsize, ) hbar2 = OT_23.sum(axis=0) pos1, pos2 = draw_transp_colored_srGW( weightedG2, C2, weightedG3, C3, part_G2, p1=None, p2=hbar2, T=OT_23, shiftx=1.5, node_size=node_size, seed_G1=seed_G2, seed_G2=seed_G3, ) pl.subplot(122) pl.axis("off") hbar3 = OT_32.sum(axis=0) pl.title( r"srFGW$(\mathbf{C_3}, \mathbf{F_3}, \mathbf{h_3}, \mathbf{C_2}, \mathbf{F_2}) =%s$" % (np.round(srfgw_32, 3)), fontsize=fontsize, ) pos1, pos2 = draw_transp_colored_srGW( weightedG3, C3, weightedG2, C2, part_G3, p1=None, p2=hbar3, T=OT_32, pos1=pos2, pos2=pos1, shiftx=3.0, node_size=node_size, seed_G1=0, seed_G2=0, ) pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 1.723 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4