This example first illustrates the computation of FGW for 1D measures estimated using a Conditional Gradient solver [24].
[24] Vayer Titouan, Chapel Laetitia, Flamary Rémi, Tavenard Romain and Courty Nicolas “Optimal Transport for structured data with application on graphs” International Conference on Machine Learning (ICML). 2019.
# Author: Titouan Vayer <titouan.vayer@irisa.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import matplotlib.pyplot as pl import numpy as np import ot from ot.gromov import gromov_wasserstein, fused_gromov_wassersteinGenerate data
# parameters # We create two 1D random measures n = 20 # number of points in the first distribution n2 = 30 # number of points in the second distribution sig = 1 # std of first distribution sig2 = 0.1 # std of second distribution np.random.seed(0) phi = np.arange(n)[:, None] xs = phi + sig * np.random.randn(n, 1) ys = np.vstack( (np.ones((n // 2, 1)), 0 * np.ones((n // 2, 1))) ) + sig2 * np.random.randn(n, 1) phi2 = np.arange(n2)[:, None] xt = phi2 + sig * np.random.randn(n2, 1) yt = np.vstack( (np.ones((n2 // 2, 1)), 0 * np.ones((n2 // 2, 1))) ) + sig2 * np.random.randn(n2, 1) yt = yt[::-1, :] p = ot.unif(n) q = ot.unif(n2)Plot data
# plot the distributions pl.figure(1, (7, 7)) pl.subplot(2, 1, 1) pl.scatter(ys, xs, c=phi, s=70) pl.ylabel("Feature value a", fontsize=20) pl.title("$\mu=\sum_i \delta_{x_i,a_i}$", fontsize=25, y=1) pl.xticks(()) pl.yticks(()) pl.subplot(2, 1, 2) pl.scatter(yt, xt, c=phi2, s=70) pl.xlabel("coordinates x/y", fontsize=25) pl.ylabel("Feature value b", fontsize=20) pl.title("$\\nu=\sum_j \delta_{y_j,b_j}$", fontsize=25, y=1) pl.yticks(()) pl.tight_layout() pl.show()Create structure matrices and across-feature distance matrix Plot matrices
cmap = "Reds" pl.figure(2, (5, 5)) fs = 15 l_x = [0, 5, 10, 15] l_y = [0, 5, 10, 15, 20, 25] gs = pl.GridSpec(5, 5) ax1 = pl.subplot(gs[3:, :2]) pl.imshow(C1, cmap=cmap, interpolation="nearest") pl.title("$C_1$", fontsize=fs) pl.xlabel("$k$", fontsize=fs) pl.ylabel("$i$", fontsize=fs) pl.xticks(l_x) pl.yticks(l_x) ax2 = pl.subplot(gs[:3, 2:]) pl.imshow(C2, cmap=cmap, interpolation="nearest") pl.title("$C_2$", fontsize=fs) pl.ylabel("$l$", fontsize=fs) pl.xticks(()) pl.yticks(l_y) ax2.set_aspect("auto") ax3 = pl.subplot(gs[3:, 2:], sharex=ax2, sharey=ax1) pl.imshow(M, cmap=cmap, interpolation="nearest") pl.yticks(l_x) pl.xticks(l_y) pl.ylabel("$i$", fontsize=fs) pl.title("$M_{AB}$", fontsize=fs) pl.xlabel("$j$", fontsize=fs) pl.tight_layout() ax3.set_aspect("auto") pl.show()Compute FGW/GW
# Computing FGW and GW alpha = 1e-3 ot.tic() Gwg, logw = fused_gromov_wasserstein( M, C1, C2, p, q, loss_fun="square_loss", alpha=alpha, verbose=True, log=True ) ot.toc() # reload_ext WGW Gg, log = gromov_wasserstein( C1, C2, p, q, loss_fun="square_loss", verbose=True, log=True )
It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|4.734412e+01|0.000000e+00|0.000000e+00 1|2.508254e+01|8.875326e-01|2.226158e+01 2|2.189327e+01|1.456740e-01|3.189279e+00 3|2.189327e+01|1.622743e-16|3.552714e-15 Elapsed time : 0.0014698505401611328 s It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|4.683978e+04|0.000000e+00|0.000000e+00 1|3.860061e+04|2.134468e-01|8.239175e+03 2|2.182948e+04|7.682787e-01|1.677113e+04 3|2.182948e+04|0.000000e+00|0.000000e+00Visualize transport matrices
# visu OT matrix cmap = "Blues" fs = 15 pl.figure(3, (13, 5)) pl.clf() pl.subplot(1, 3, 1) pl.imshow(Got, cmap=cmap, interpolation="nearest") pl.ylabel("$i$", fontsize=fs) pl.xticks(()) pl.title("Wasserstein ($M$ only)") pl.subplot(1, 3, 2) pl.imshow(Gg, cmap=cmap, interpolation="nearest") pl.title("Gromov ($C_1,C_2$ only)") pl.xticks(()) pl.subplot(1, 3, 3) pl.imshow(Gwg, cmap=cmap, interpolation="nearest") pl.title("FGW ($M+C_1,C_2$)") pl.xlabel("$j$", fontsize=fs) pl.ylabel("$i$", fontsize=fs) pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 0.544 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4