This example presents how to use MappingTransport to estimate at the same time both the coupling transport and approximate the transport map with either a linear or a kernelized mapping as introduced in [8].
[8] M. Perrot, N. Courty, R. Flamary, A. Habrard, “Mapping estimation for discrete optimal transport”, Neural Information Processing Systems (NIPS), 2016.
# Authors: Remi Flamary <remi.flamary@unice.fr> # Stanislas Chambon <stan.chambon@gmail.com> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import numpy as np import matplotlib.pylab as pl import otGenerate data
n_source_samples = 100 n_target_samples = 100 theta = 2 * np.pi / 20 noise_level = 0.1 Xs, ys = ot.datasets.make_data_classif("gaussrot", n_source_samples, nz=noise_level) Xs_new, _ = ot.datasets.make_data_classif("gaussrot", n_source_samples, nz=noise_level) Xt, yt = ot.datasets.make_data_classif( "gaussrot", n_target_samples, theta=theta, nz=noise_level ) # one of the target mode changes its variance (no linear mapping) Xt[yt == 2] *= 3 Xt = Xt + 4Plot data
pl.figure(1, (10, 5)) pl.clf() pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.legend(loc=0) pl.title("Source and target distributions")
Text(0.5, 1.0, 'Source and target distributions')Instantiate the different transport algorithms and fit them
# MappingTransport with linear kernel ot_mapping_linear = ot.da.MappingTransport( kernel="linear", mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True ) ot_mapping_linear.fit(Xs=Xs, Xt=Xt) # for original source samples, transform applies barycentric mapping transp_Xs_linear = ot_mapping_linear.transform(Xs=Xs) # for out of source samples, transform applies the linear mapping transp_Xs_linear_new = ot_mapping_linear.transform(Xs=Xs_new) # MappingTransport with gaussian kernel ot_mapping_gaussian = ot.da.MappingTransport( kernel="gaussian", eta=1e-5, mu=1e-1, bias=True, sigma=1, max_iter=10, verbose=True ) ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt) # for original source samples, transform applies barycentric mapping transp_Xs_gaussian = ot_mapping_gaussian.transform(Xs=Xs) # for out of source samples, transform applies the gaussian mapping transp_Xs_gaussian_new = ot_mapping_gaussian.transform(Xs=Xs_new)
It. |Loss |Delta loss -------------------------------- 0|4.190105e+03|0.000000e+00 1|4.170411e+03|-4.700201e-03 2|4.169845e+03|-1.356805e-04 3|4.169664e+03|-4.344581e-05 4|4.169558e+03|-2.549048e-05 5|4.169490e+03|-1.619901e-05 6|4.169453e+03|-8.982881e-06 It. |Loss |Delta loss -------------------------------- 0|4.207356e+02|0.000000e+00 1|4.153604e+02|-1.277552e-02 2|4.150590e+02|-7.257432e-04 3|4.149197e+02|-3.356453e-04 4|4.148198e+02|-2.408251e-04 5|4.147508e+02|-1.661834e-04 6|4.147001e+02|-1.223502e-04 7|4.146607e+02|-9.506358e-05 8|4.146269e+02|-8.141766e-05 9|4.145989e+02|-6.750100e-05 10|4.145770e+02|-5.283163e-05Plot transported samples
pl.figure(2) pl.clf() pl.subplot(2, 2, 1) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.2) pl.scatter( transp_Xs_linear[:, 0], transp_Xs_linear[:, 1], c=ys, marker="+", label="Mapped source samples", ) pl.title("Bary. mapping (linear)") pl.legend(loc=0) pl.subplot(2, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.2) pl.scatter( transp_Xs_linear_new[:, 0], transp_Xs_linear_new[:, 1], c=ys, marker="+", label="Learned mapping", ) pl.title("Estim. mapping (linear)") pl.subplot(2, 2, 3) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.2) pl.scatter( transp_Xs_gaussian[:, 0], transp_Xs_gaussian[:, 1], c=ys, marker="+", label="barycentric mapping", ) pl.title("Bary. mapping (kernel)") pl.subplot(2, 2, 4) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.2) pl.scatter( transp_Xs_gaussian_new[:, 0], transp_Xs_gaussian_new[:, 1], c=ys, marker="+", label="Learned mapping", ) pl.title("Estim. mapping (kernel)") pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 0.654 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4