This example introduces a target shift problem with two 2D source and 1 target domain.
# Authors: Remi Flamary <remi.flamary@unice.fr> # Ievgen Redko <ievgen.redko@univ-st-etienne.fr> # # License: MIT License import pylab as pl import numpy as np import ot from ot.datasets import make_data_classifGenerate data
n = 50 sigma = 0.3 np.random.seed(1985) p1 = 0.2 dec1 = [0, 2] p2 = 0.9 dec2 = [0, -2] pt = 0.4 dect = [4, 0] xs1, ys1 = make_data_classif("2gauss_prop", n, nz=sigma, p=p1, bias=dec1) xs2, ys2 = make_data_classif("2gauss_prop", n + 1, nz=sigma, p=p2, bias=dec2) xt, yt = make_data_classif("2gauss_prop", n, nz=sigma, p=pt, bias=dect) all_Xr = [xs1, xs2] all_Yr = [ys1, ys2]
da = 1.5 def plot_ax(dec, name): pl.plot([dec[0], dec[0]], [dec[1] - da, dec[1] + da], "k", alpha=0.5) pl.plot([dec[0] - da, dec[0] + da], [dec[1], dec[1]], "k", alpha=0.5) pl.text(dec[0] - 0.5, dec[1] + 2, name)Fig 1 : plots source and target samples
pl.figure(1) pl.clf() plot_ax(dec1, "Source 1") plot_ax(dec2, "Source 2") plot_ax(dect, "Target") pl.scatter( xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9, label="Source 1 ({:1.2f}, {:1.2f})".format(1 - p1, p1), ) pl.scatter( xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9, label="Source 2 ({:1.2f}, {:1.2f})".format(1 - p2, p2), ) pl.scatter( xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9, label="Target ({:1.2f}, {:1.2f})".format(1 - pt, pt), ) pl.title("Data") pl.legend() pl.axis("equal") pl.axis("off")
(np.float64(-1.85), np.float64(5.85), np.float64(-4.046431138906241), np.float64(4.129455496299416))Instantiate Sinkhorn transport algorithm and fit them for all source domains
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1, metric="sqeuclidean") def print_G(G, xs, ys, xt): for i in range(G.shape[0]): for j in range(G.shape[1]): if G[i, j] > 5e-4: if ys[i]: c = "b" else: c = "r" pl.plot([xs[i, 0], xt[j, 0]], [xs[i, 1], xt[j, 1]], c, alpha=0.2)Fig 2 : plot optimal couplings and transported samples
pl.figure(2) pl.clf() plot_ax(dec1, "Source 1") plot_ax(dec2, "Source 2") plot_ax(dect, "Target") print_G(ot_sinkhorn.fit(Xs=xs1, Xt=xt).coupling_, xs1, ys1, xt) print_G(ot_sinkhorn.fit(Xs=xs2, Xt=xt).coupling_, xs2, ys2, xt) pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9) pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9) pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9) pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1") pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2") pl.title("Independent OT") pl.legend() pl.axis("equal") pl.axis("off")
(np.float64(-1.85), np.float64(5.85), np.float64(-4.046431138906241), np.float64(4.129455496299416))Instantiate JCPOT adaptation algorithm and fit it
otda = ot.da.JCPOTTransport( reg_e=1, max_iter=1000, metric="sqeuclidean", tol=1e-9, verbose=True, log=True ) otda.fit(all_Xr, all_Yr, xt) ws1 = otda.proportions_.dot(otda.log_["D2"][0]) ws2 = otda.proportions_.dot(otda.log_["D2"][1]) pl.figure(3) pl.clf() plot_ax(dec1, "Source 1") plot_ax(dec2, "Source 2") plot_ax(dect, "Target") print_G(ot.bregman.sinkhorn(ws1, [], otda.log_["M"][0], reg=1e-1), xs1, ys1, xt) print_G(ot.bregman.sinkhorn(ws2, [], otda.log_["M"][1], reg=1e-1), xs2, ys2, xt) pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9) pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9) pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9) pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1") pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2") pl.title( "OT with prop estimation ({:1.3f},{:1.3f})".format( otda.proportions_[0], otda.proportions_[1] ) ) pl.legend() pl.axis("equal") pl.axis("off")
It. |Err ------------------- 0|1.069551e+00| (np.float64(-1.85), np.float64(5.85), np.float64(-4.046431138906241), np.float64(4.129455496299416))Run oracle transport algorithm with known proportions
h_res = np.array([1 - pt, pt]) ws1 = h_res.dot(otda.log_["D2"][0]) ws2 = h_res.dot(otda.log_["D2"][1]) pl.figure(4) pl.clf() plot_ax(dec1, "Source 1") plot_ax(dec2, "Source 2") plot_ax(dect, "Target") print_G(ot.bregman.sinkhorn(ws1, [], otda.log_["M"][0], reg=1e-1), xs1, ys1, xt) print_G(ot.bregman.sinkhorn(ws2, [], otda.log_["M"][1], reg=1e-1), xs2, ys2, xt) pl.scatter(xs1[:, 0], xs1[:, 1], c=ys1, s=35, marker="x", cmap="Set1", vmax=9) pl.scatter(xs2[:, 0], xs2[:, 1], c=ys2, s=35, marker="+", cmap="Set1", vmax=9) pl.scatter(xt[:, 0], xt[:, 1], c=yt, s=35, marker="o", cmap="Set1", vmax=9) pl.plot([], [], "r", alpha=0.2, label="Mass from Class 1") pl.plot([], [], "b", alpha=0.2, label="Mass from Class 2") pl.title("OT with known proportion ({:1.1f},{:1.1f})".format(h_res[0], h_res[1])) pl.legend() pl.axis("equal") pl.axis("off") pl.show()
/home/circleci/project/ot/bregman/_sinkhorn.py:667: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn(
Total running time of the script: (0 minutes 2.303 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4