This example introduces a domain adaptation in a 2D setting. It explicit the problem of domain adaptation and introduces some optimal transport approaches to solve it.
Quantities such as optimal couplings, greater coupling coefficients and transported samples are represented in order to give a visual understanding of what the transport methods are doing.
# Authors: Remi Flamary <remi.flamary@unice.fr> # Stanislas Chambon <stan.chambon@gmail.com> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import matplotlib.pylab as pl import ot import ot.plotGenerate data Instantiate the different transport algorithms and fit them
/home/circleci/project/ot/bregman/_sinkhorn.py:903: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn( /home/circleci/project/ot/bregman/_sinkhorn.py:667: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn(Fig 1 : plots source and target samples + matrix of pairwise distance
pl.figure(1, figsize=(10, 10)) pl.subplot(2, 2, 1) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title("Source samples") pl.subplot(2, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title("Target samples") pl.subplot(2, 2, 3) pl.imshow(M, interpolation="nearest") pl.xticks([]) pl.yticks([]) pl.title("Matrix of pairwise distances") pl.tight_layout()Fig 2 : plots optimal couplings for the different methods
pl.figure(2, figsize=(10, 6)) pl.subplot(2, 3, 1) pl.imshow(ot_emd.coupling_, interpolation="nearest") pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nEMDTransport") pl.subplot(2, 3, 2) pl.imshow(ot_sinkhorn.coupling_, interpolation="nearest") pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nSinkhornTransport") pl.subplot(2, 3, 3) pl.imshow(ot_lpl1.coupling_, interpolation="nearest") pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nSinkhornLpl1Transport") pl.subplot(2, 3, 4) ot.plot.plot2D_samples_mat(Xs, Xt, ot_emd.coupling_, c=[0.5, 0.5, 1]) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.xticks([]) pl.yticks([]) pl.title("Main coupling coefficients\nEMDTransport") pl.subplot(2, 3, 5) ot.plot.plot2D_samples_mat(Xs, Xt, ot_sinkhorn.coupling_, c=[0.5, 0.5, 1]) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.xticks([]) pl.yticks([]) pl.title("Main coupling coefficients\nSinkhornTransport") pl.subplot(2, 3, 6) ot.plot.plot2D_samples_mat(Xs, Xt, ot_lpl1.coupling_, c=[0.5, 0.5, 1]) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.xticks([]) pl.yticks([]) pl.title("Main coupling coefficients\nSinkhornLpl1Transport") pl.tight_layout()Fig 3 : plot transported samples
# display transported samples pl.figure(4, figsize=(10, 4)) pl.subplot(1, 3, 1) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.5) pl.scatter( transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.title("Transported samples\nEmdTransport") pl.legend(loc=0) pl.xticks([]) pl.yticks([]) pl.subplot(1, 3, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.5) pl.scatter( transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.title("Transported samples\nSinkhornTransport") pl.xticks([]) pl.yticks([]) pl.subplot(1, 3, 3) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.5) pl.scatter( transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.title("Transported samples\nSinkhornLpl1Transport") pl.xticks([]) pl.yticks([]) pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 6.911 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4