This example introduces a domain adaptation in a 2D setting and the 4 OTDA approaches currently supported in POT.
# Authors: Remi Flamary <remi.flamary@unice.fr> # Stanislas Chambon <stan.chambon@gmail.com> # # License: MIT License import matplotlib.pylab as pl import otGenerate data Instantiate the different transport algorithms and fit them
# EMD Transport ot_emd = ot.da.EMDTransport() ot_emd.fit(Xs=Xs, Xt=Xt) # Sinkhorn Transport ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1) ot_sinkhorn.fit(Xs=Xs, Xt=Xt) # Sinkhorn Transport with Group lasso regularization ot_lpl1 = ot.da.SinkhornLpl1Transport(reg_e=1e-1, reg_cl=1e0) ot_lpl1.fit(Xs=Xs, ys=ys, Xt=Xt) # Sinkhorn Transport with Group lasso regularization l1l2 ot_l1l2 = ot.da.SinkhornL1l2Transport(reg_e=1e-1, reg_cl=2e0, max_iter=20, verbose=True) ot_l1l2.fit(Xs=Xs, ys=ys, Xt=Xt) # transport source samples onto target samples transp_Xs_emd = ot_emd.transform(Xs=Xs) transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=Xs) transp_Xs_lpl1 = ot_lpl1.transform(Xs=Xs) transp_Xs_l1l2 = ot_l1l2.transform(Xs=Xs)
/home/circleci/project/ot/bregman/_sinkhorn.py:903: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn( /home/circleci/project/ot/bregman/_sinkhorn.py:667: UserWarning: Sinkhorn did not converge. You might want to increase the number of iterations `numItermax` or the regularization parameter `reg`. warnings.warn( It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 0|9.763061e+00|0.000000e+00|0.000000e+00 1|2.081861e+00|3.689583e+00|7.681200e+00 2|1.862280e+00|1.179100e-01|2.195813e-01 3|1.821987e+00|2.211501e-02|4.029326e-02 4|1.808932e+00|7.216608e-03|1.305436e-02 5|1.792762e+00|9.019666e-03|1.617012e-02 6|1.785968e+00|3.804295e-03|6.794348e-03 7|1.778259e+00|4.335304e-03|7.709292e-03 8|1.772608e+00|3.187777e-03|5.650678e-03 9|1.768734e+00|2.190456e-03|3.874332e-03 10|1.768700e+00|1.876119e-05|3.318292e-05 11|1.767482e+00|6.894485e-04|1.218588e-03 12|1.765491e+00|1.127725e-03|1.990989e-03 13|1.762434e+00|1.734384e-03|3.056738e-03 14|1.759833e+00|1.478250e-03|2.601472e-03 15|1.758374e+00|8.294698e-04|1.458518e-03 16|1.757601e+00|4.396351e-04|7.727032e-04 17|1.756624e+00|5.562652e-04|9.771489e-04 18|1.754377e+00|1.281229e-03|2.247758e-03 19|1.753747e+00|3.587988e-04|6.292424e-04 It. |Loss |Relative loss|Absolute loss ------------------------------------------------ 20|1.753162e+00|3.336538e-04|5.849492e-04Fig 1 : plots source and target samples
pl.figure(1, figsize=(10, 5)) pl.subplot(1, 2, 1) pl.scatter(Xs[:, 0], Xs[:, 1], c=ys, marker="+", label="Source samples") pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title("Source samples") pl.subplot(1, 2, 2) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples") pl.xticks([]) pl.yticks([]) pl.legend(loc=0) pl.title("Target samples") pl.tight_layout()Fig 2 : plot optimal couplings and transported samples
param_img = {"interpolation": "nearest"} pl.figure(2, figsize=(15, 8)) pl.subplot(2, 4, 1) pl.imshow(ot_emd.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nEMDTransport") pl.subplot(2, 4, 2) pl.imshow(ot_sinkhorn.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nSinkhornTransport") pl.subplot(2, 4, 3) pl.imshow(ot_lpl1.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nSinkhornLpl1Transport") pl.subplot(2, 4, 4) pl.imshow(ot_l1l2.coupling_, **param_img) pl.xticks([]) pl.yticks([]) pl.title("Optimal coupling\nSinkhornL1l2Transport") pl.subplot(2, 4, 5) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.3) pl.scatter( transp_Xs_emd[:, 0], transp_Xs_emd[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.xticks([]) pl.yticks([]) pl.title("Transported samples\nEmdTransport") pl.legend(loc="lower left") pl.subplot(2, 4, 6) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.3) pl.scatter( transp_Xs_sinkhorn[:, 0], transp_Xs_sinkhorn[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.xticks([]) pl.yticks([]) pl.title("Transported samples\nSinkhornTransport") pl.subplot(2, 4, 7) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.3) pl.scatter( transp_Xs_lpl1[:, 0], transp_Xs_lpl1[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.xticks([]) pl.yticks([]) pl.title("Transported samples\nSinkhornLpl1Transport") pl.subplot(2, 4, 8) pl.scatter(Xt[:, 0], Xt[:, 1], c=yt, marker="o", label="Target samples", alpha=0.3) pl.scatter( transp_Xs_l1l2[:, 0], transp_Xs_l1l2[:, 1], c=ys, marker="+", label="Transp samples", s=30, ) pl.xticks([]) pl.yticks([]) pl.title("Transported samples\nSinkhornL1l2Transport") pl.tight_layout() pl.show()
Total running time of the script: (0 minutes 0.914 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4