In this example we train a Wasserstein GAN using Wasserstein 2 on minibatches as a distribution fitting term.
We want to train a generator \(G_\theta\) that generates realistic data from random noise drawn form a Gaussian \(\mu_n\) distribution so that the data is indistinguishable from true data in the data distribution \(\mu_d\). To this end Wasserstein GAN [Arjovsky2017] aim at optimizing the parameters \(\theta\) of the generator with the following optimization problem:
\[\min_{\theta} W(\mu_d,G_\theta\#\mu_n)\]
In practice we do not have access to the full distribution \(\mu_d\) but samples and we cannot compute the Wasserstein distance for large dataset. [Arjovsky2017] proposed to approximate the dual potential of Wasserstein 1 with a neural network recovering an optimization problem similar to GAN. In this example we will optimize the expectation of the Wasserstein distance over minibatches at each iterations as proposed in [Genevay2018]. Optimizing the Minibatches of the Wasserstein distance has been studied in [Fatras2019].
[Arjovsky2017] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR.
[Genevay2018] Genevay, Aude, Gabriel Peyré, and Marco Cuturi. “Learning generative models with sinkhorn divergences.” International Conference on Artificial Intelligence and Statistics. PMLR, 2018.
[Fatras2019] Fatras, K., Zine, Y., Flamary, R., Gribonval, R., & Courty, N. (2020, June). Learning with minibatch Wasserstein: asymptotic and gradient properties. In the 23nd International Conference on Artificial Intelligence and Statistics (Vol. 108).
# Author: Remi Flamary <remi.flamary@polytechnique.edu> # # License: MIT License # sphinx_gallery_thumbnail_number = 3 import numpy as np import matplotlib.pyplot as pl import matplotlib.animation as animation import torch from torch import nn import otData generation Plot data
<matplotlib.legend.Legend object at 0x7f58e9bd0160>Generator Model
# define the MLP model class Generator(torch.nn.Module): def __init__(self): super(Generator, self).__init__() self.fc1 = nn.Linear(n_features, 200) self.fc2 = nn.Linear(200, 500) self.fc3 = nn.Linear(500, n_dims) self.relu = torch.nn.ReLU() # instead of Heaviside step fn def forward(self, x): output = self.fc1(x) output = self.relu(output) # instead of Heaviside step fn output = self.fc2(output) output = self.relu(output) output = self.fc3(output) return outputTraining the model
G = Generator() optimizer = torch.optim.RMSprop(G.parameters(), lr=0.00019, eps=1e-5) # number of iteration and size of the batches n_iter = 200 # set to 200 for doc build but 1000 is better ;) size_batch = 500 # generate statis samples to see their trajectory along training n_visu = 100 xnvisu = torch.randn(n_visu, n_features) xvisu = torch.zeros(n_iter, n_visu, n_dims) ab = torch.ones(size_batch) / size_batch losses = [] for i in range(n_iter): # generate noise samples xn = torch.randn(size_batch, n_features) # generate data samples xd = get_data(size_batch) # generate sample along iterations xvisu[i, :, :] = G(xnvisu).detach() # generate samples and compte distance matrix xg = G(xn) M = ot.dist(xg, xd) loss = ot.emd2(ab, ab, M) losses.append(float(loss.detach())) if i % 10 == 0: print("Iter: {:3d}, loss={}".format(i, losses[-1])) loss.backward() optimizer.step() optimizer.zero_grad() del M pl.figure(2) pl.semilogy(losses) pl.grid() pl.title("Wasserstein distance") pl.xlabel("Iterations")
Iter: 0, loss=0.9009847640991211 Iter: 10, loss=0.10964284837245941 Iter: 20, loss=0.04564394801855087 Iter: 30, loss=0.03516071289777756 Iter: 40, loss=0.05013977363705635 Iter: 50, loss=0.058588504791259766 Iter: 60, loss=0.03730057179927826 Iter: 70, loss=0.04171676188707352 Iter: 80, loss=0.03168988972902298 Iter: 90, loss=0.031197285279631615 Iter: 100, loss=0.03596879169344902 Iter: 110, loss=0.03272819146513939 Iter: 120, loss=0.032379165291786194 Iter: 130, loss=0.03959248960018158 Iter: 140, loss=0.029337508603930473 Iter: 150, loss=0.05796702206134796 Iter: 160, loss=0.034939464181661606 Iter: 170, loss=0.022607704624533653 Iter: 180, loss=0.04347885772585869 Iter: 190, loss=0.1164197325706482 Text(0.5, 23.52222222222222, 'Iterations')Plot trajectories of generated samples along iterations
pl.figure(3, (10, 10)) ivisu = [0, 10, 25, 50, 75, 125, 15, 175, 199] for i in range(9): pl.subplot(3, 3, i + 1) pl.scatter(xd[:, 0], xd[:, 1], label="Data samples from $\mu_d$", alpha=0.1) pl.scatter( xvisu[ivisu[i], :, 0], xvisu[ivisu[i], :, 1], label="Data samples from $G\#\mu_n$", alpha=0.5, ) pl.xticks(()) pl.yticks(()) pl.title("Iter. {}".format(ivisu[i])) if i == 0: pl.legend()Animate trajectories of generated samples along iteration
pl.figure(4, (8, 8)) def _update_plot(i): pl.clf() pl.scatter(xd[:, 0], xd[:, 1], label="Data samples from $\mu_d$", alpha=0.1) pl.scatter( xvisu[i, :, 0], xvisu[i, :, 1], label="Data samples from $G\#\mu_n$", alpha=0.5 ) pl.xticks(()) pl.yticks(()) pl.xlim((-1.5, 1.5)) pl.ylim((-1.5, 1.5)) pl.title("Iter. {}".format(i)) return 1 i = 0 pl.scatter(xd[:, 0], xd[:, 1], label="Data samples from $\mu_d$", alpha=0.1) pl.scatter( xvisu[i, :, 0], xvisu[i, :, 1], label="Data samples from $G\#\mu_n$", alpha=0.5 ) pl.xticks(()) pl.yticks(()) pl.xlim((-1.5, 1.5)) pl.ylim((-1.5, 1.5)) pl.title("Iter. {}".format(ivisu[i])) ani = animation.FuncAnimation( pl.gcf(), _update_plot, n_iter, interval=100, repeat_delay=2000 )Generate and visualize data
size_batch = 500 xd = get_data(size_batch) xn = torch.randn(size_batch, 2) x = G(xn).detach().numpy() pl.figure(5) pl.scatter(xd[:, 0], xd[:, 1], label="Data samples from $\mu_d$", alpha=0.5) pl.scatter(x[:, 0], x[:, 1], label="Data samples from $G\#\mu_n$", alpha=0.5) pl.title("Sources and Target distributions") pl.legend()
<matplotlib.legend.Legend object at 0x7f5904a6a1a0>
Total running time of the script: (1 minutes 0.979 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4