In this small example, we consider the following minimization problem:
\[\mu^* = \min_\mu W(\mu,\nu)\]
where \(\nu\) is a reference 1D measure. The problem is handled by a projected gradient descent method, where the gradient is computed by pyTorch automatic differentiation. The projection on the simplex ensures that the iterate will remain on the probability simplex.
This example illustrates both wasserstein_1d function and backend use within the POT framework.
# Author: Nicolas Courty <ncourty@irisa.fr> # Rémi Flamary <remi.flamary@polytechnique.edu> # # License: MIT License import numpy as np import matplotlib.pylab as pl import matplotlib as mpl import torch from ot.lp import wasserstein_1d from ot.datasets import make_1D_gauss as gauss from ot.utils import proj_simplex red = np.array(mpl.colors.to_rgb("red")) blue = np.array(mpl.colors.to_rgb("blue")) n = 100 # nb bins # bin positions x = np.arange(n, dtype=np.float64) # Gaussian distributions a = gauss(n, m=20, s=5) # m= mean, s= std b = gauss(n, m=60, s=10) # enforce sum to one on the support a = a / a.sum() b = b / b.sum() device = "cuda" if torch.cuda.is_available() else "cpu" # use pyTorch for our data x_torch = torch.tensor(x).to(device=device) a_torch = torch.tensor(a).to(device=device).requires_grad_(True) b_torch = torch.tensor(b).to(device=device) lr = 1e-6 nb_iter_max = 800 loss_iter = [] pl.figure(1, figsize=(8, 4)) pl.plot(x, a, "b", label="Source distribution") pl.plot(x, b, "r", label="Target distribution") for i in range(nb_iter_max): # Compute the Wasserstein 1D with torch backend loss = wasserstein_1d(x_torch, x_torch, a_torch, b_torch, p=2) # record the corresponding loss value loss_iter.append(loss.clone().detach().cpu().numpy()) loss.backward() # performs a step of projected gradient descent with torch.no_grad(): grad = a_torch.grad a_torch -= a_torch.grad * lr # step a_torch.grad.zero_() a_torch.data = proj_simplex(a_torch) # projection onto the simplex # plot one curve every 10 iterations if i % 10 == 0: mix = float(i) / nb_iter_max pl.plot( x, a_torch.clone().detach().cpu().numpy(), c=(1 - mix) * blue + mix * red ) pl.legend() pl.title("Distribution along the iterations of the projected gradient descent") pl.show() pl.figure(2) pl.plot(range(nb_iter_max), loss_iter, lw=3) pl.title("Evolution of the loss along iterations", fontsize=16) pl.show()
/home/circleci/project/ot/lp/solver_1d.py:41: UserWarning: The use of `x.T` on tensors of dimension other than 2 to reverse their shape is deprecated and it will throw an error in a future release. Consider `x.mT` to transpose batches of matrices or `x.permute(*torch.arange(x.ndim - 1, -1, -1))` to reverse the dimensions of a tensor. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3683.) cws = cws.T.contiguous()Wasserstein barycenter
In this example, we consider the following Wasserstein barycenter problem $$ \eta^* = \min_\eta;;; (1-t)W(\mu,\eta) + tW(\eta,\nu)$$ where \(\\mu\) and \(\\nu\) are reference 1D measures, and \(t\) is a parameter \(\in [0,1]\). The problem is handled by a project gradient descent method, where the gradient is computed by pyTorch automatic differentiation. The projection on the simplex ensures that the iterate will remain on the probability simplex.
This example illustrates both wasserstein_1d function and backend use within the POT framework.
device = "cuda" if torch.cuda.is_available() else "cpu" # use pyTorch for our data x_torch = torch.tensor(x).to(device=device) a_torch = torch.tensor(a).to(device=device) b_torch = torch.tensor(b).to(device=device) bary_torch = torch.tensor((a + b).copy() / 2).to(device=device).requires_grad_(True) lr = 1e-6 nb_iter_max = 2000 loss_iter = [] # instant of the interpolation t = 0.5 for i in range(nb_iter_max): # Compute the Wasserstein 1D with torch backend loss = (1 - t) * wasserstein_1d( x_torch, x_torch, a_torch.detach(), bary_torch, p=2 ) + t * wasserstein_1d(x_torch, x_torch, b_torch, bary_torch, p=2) # record the corresponding loss value loss_iter.append(loss.clone().detach().cpu().numpy()) loss.backward() # performs a step of projected gradient descent with torch.no_grad(): grad = bary_torch.grad bary_torch -= bary_torch.grad * lr # step bary_torch.grad.zero_() bary_torch.data = proj_simplex(bary_torch) # projection onto the simplex pl.figure(3, figsize=(8, 4)) pl.plot(x, a, "b", label="Source distribution") pl.plot(x, b, "r", label="Target distribution") pl.plot(x, bary_torch.clone().detach().cpu().numpy(), c="green", label="W barycenter") pl.legend() pl.title("Wasserstein barycenter computed by gradient descent") pl.show() pl.figure(4) pl.plot(range(nb_iter_max), loss_iter, lw=3) pl.title("Evolution of the loss along iterations", fontsize=16) pl.show()
Total running time of the script: (0 minutes 2.967 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4