In this example we use the pytorch backend to optimize the sliced Wasserstein loss between two empirical distributions [31].
In the first example one we perform a gradient flow on the support of a distribution that minimize the sliced Wasserstein distance as proposed in [36].
In the second example we optimize with a gradient descent the sliced Wasserstein barycenter between two distributions as in [31].
[31] Bonneel, Nicolas, et al. “Sliced and radon wasserstein barycenters of measures.” Journal of Mathematical Imaging and Vision 51.1 (2015): 22-45
[36] Liutkus, A., Simsekli, U., Majewski, S., Durmus, A., & Stöter, F. R. (2019, May). Sliced-Wasserstein flows: Nonparametric generative modeling via optimal transport and diffusions. In International Conference on Machine Learning (pp. 4104-4113). PMLR.
# Author: Rémi Flamary <remi.flamary@polytechnique.edu> # # License: MIT License # sphinx_gallery_thumbnail_number = 4
Loading the data
import numpy as np import matplotlib.pylab as pl import torch import ot import matplotlib.animation as animation I1 = pl.imread("../../data/redcross.png").astype(np.float64)[::5, ::5, 2] I2 = pl.imread("../../data/tooth.png").astype(np.float64)[::5, ::5, 2] sz = I2.shape[0] XX, YY = np.meshgrid(np.arange(sz), np.arange(sz)) x1 = np.stack((XX[I1 == 0], YY[I1 == 0]), 1) * 1.0 x2 = np.stack((XX[I2 == 0] + 60, -YY[I2 == 0] + 32), 1) * 1.0 x3 = np.stack((XX[I2 == 0], -YY[I2 == 0] + 32), 1) * 1.0 pl.figure(1, (8, 4)) pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5) pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5)
<matplotlib.collections.PathCollection object at 0x7f5904a6bf70>Sliced Wasserstein gradient flow with Pytorch
device = "cuda" if torch.cuda.is_available() else "cpu" # use pyTorch for our data x1_torch = torch.tensor(x1).to(device=device).requires_grad_(True) x2_torch = torch.tensor(x2).to(device=device) lr = 1e3 nb_iter_max = 50 x_all = np.zeros((nb_iter_max, x1.shape[0], 2)) loss_iter = [] # generator for random permutations gen = torch.Generator(device=device) gen.manual_seed(42) for i in range(nb_iter_max): loss = ot.sliced_wasserstein_distance( x1_torch, x2_torch, n_projections=20, seed=gen ) loss_iter.append(loss.clone().detach().cpu().numpy()) loss.backward() # performs a step of projected gradient descent with torch.no_grad(): grad = x1_torch.grad x1_torch -= grad * lr / (1 + i / 5e1) # step x1_torch.grad.zero_() x_all[i, :, :] = x1_torch.clone().detach().cpu().numpy() xb = x1_torch.clone().detach().cpu().numpy() pl.figure(2, (8, 4)) pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label="$\mu^{(0)}$") pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r"$\nu$") pl.scatter(xb[:, 0], xb[:, 1], alpha=0.5, label="$\mu^{(100)}$") pl.title("Sliced Wasserstein gradient flow") pl.legend() ax = pl.axis()Animate trajectories of the gradient flow along iteration
pl.figure(3, (8, 4)) def _update_plot(i): pl.clf() pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label="$\mu^{(0)}$") pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r"$\nu$") pl.scatter(x_all[i, :, 0], x_all[i, :, 1], alpha=0.5, label="$\mu^{(100)}$") pl.title("Sliced Wasserstein gradient flow Iter. {}".format(i)) pl.axis(ax) return 1 ani = animation.FuncAnimation( pl.gcf(), _update_plot, nb_iter_max, interval=100, repeat_delay=2000 )Compute the Sliced Wasserstein Barycenter
x1_torch = torch.tensor(x1).to(device=device) x3_torch = torch.tensor(x3).to(device=device) xbinit = np.random.randn(500, 2) * 10 + 16 xbary_torch = torch.tensor(xbinit).to(device=device).requires_grad_(True) lr = 1e3 nb_iter_max = 50 x_all = np.zeros((nb_iter_max, xbary_torch.shape[0], 2)) loss_iter = [] # generator for random permutations gen = torch.Generator(device=device) gen.manual_seed(42) alpha = 0.5 for i in range(nb_iter_max): loss = alpha * ot.sliced_wasserstein_distance( xbary_torch, x3_torch, n_projections=50, seed=gen ) + (1 - alpha) * ot.sliced_wasserstein_distance( xbary_torch, x1_torch, n_projections=50, seed=gen ) loss_iter.append(loss.clone().detach().cpu().numpy()) loss.backward() # performs a step of projected gradient descent with torch.no_grad(): grad = xbary_torch.grad xbary_torch -= grad * lr # / (1 + i / 5e1) # step xbary_torch.grad.zero_() x_all[i, :, :] = xbary_torch.clone().detach().cpu().numpy() xb = xbary_torch.clone().detach().cpu().numpy() pl.figure(4, (8, 4)) pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label="$\mu$") pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r"$\nu$") pl.scatter(xb[:, 0] + 30, xb[:, 1], alpha=0.5, label="Barycenter") pl.title("Sliced Wasserstein barycenter") pl.legend() ax = pl.axis()Animate trajectories of the barycenter along gradient descent
pl.figure(5, (8, 4)) def _update_plot(i): pl.clf() pl.scatter(x1[:, 0], x1[:, 1], alpha=0.5, label="$\mu^{(0)}$") pl.scatter(x2[:, 0], x2[:, 1], alpha=0.5, label=r"$\nu$") pl.scatter(x_all[i, :, 0] + 30, x_all[i, :, 1], alpha=0.5, label="$\mu^{(100)}$") pl.title("Sliced Wasserstein barycenter Iter. {}".format(i)) pl.axis(ax) return 1 ani = animation.FuncAnimation( pl.gcf(), _update_plot, nb_iter_max, interval=100, repeat_delay=2000 )
Total running time of the script: (0 minutes 38.246 seconds)
Gallery generated by Sphinx-Gallery
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4