# -*- coding: utf-8 -*- """ Regularized Unbalanced OT solvers """ # Author: Hicham Janati <hicham.janati@inria.fr> # Laetitia Chapel <laetitia.chapel@univ-ubs.fr> # Quang Huy Tran <quang-huy.tran@univ-ubs.fr> # # License: MIT License import warnings import numpy as np from scipy.optimize import minimize, Bounds from ..backend import get_backend from ..utils import list_to_array, get_parameter_pair def _get_loss_unbalanced(a, b, c, M, reg, reg_m1, reg_m2, reg_div="kl", regm_div="kl"): """ Return loss function for the L-BFGS-B solver .. note:: This function will be fed into scipy.optimize, so all input arrays must be Numpy arrays. Parameters ---------- a : array-like (dim_a,) Unnormalized histogram of dimension `dim_a` b : array-like (dim_b,) Unnormalized histogram of dimension `dim_b` M : array-like (dim_a, dim_b) loss matrix reg: float regularization term >=0 c : array-like (dim_a, dim_b), optional (default = None) Reference measure for the regularization. If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`. reg_m1: float Marginal relaxation term with respect to the first marginal: nonnegative (including 0) but cannot be infinity. reg_m2: float Marginal relaxation term with respect to the second marginal: nonnegative (including 0) but cannot be infinity. reg_div: string, optional Divergence used for regularization. Can take three values: 'entropy' (negative entropy), or 'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple of two calable functions returning the reg term and its derivative. Note that the callable functions should be able to handle Numpy arrays and not tesors from the backend regm_div: string, optional Divergence to quantify the difference between the marginals. Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation) Returns ------- Loss function (scipy.optimize compatible) for regularized unbalanced OT """ m, n = M.shape nx_numpy = get_backend(M, a, b) def reg_l2(G): return np.sum((G - c) ** 2) / 2 def grad_l2(G): return G - c def reg_kl(G): return nx_numpy.kl_div(G, c, mass=True) def grad_kl(G): return np.log(G / c + 1e-16) def reg_entropy(G): return np.sum(G * np.log(G + 1e-16)) - np.sum(G) def grad_entropy(G): return np.log(G + 1e-16) if reg_div == "kl": reg_fun = reg_kl grad_reg_fun = grad_kl elif reg_div == "entropy": reg_fun = reg_entropy grad_reg_fun = grad_entropy elif isinstance(reg_div, tuple): reg_fun = reg_div[0] grad_reg_fun = reg_div[1] else: reg_fun = reg_l2 grad_reg_fun = grad_l2 def marg_l2(G): return reg_m1 * 0.5 * np.sum((G.sum(1) - a) ** 2) + reg_m2 * 0.5 * np.sum( (G.sum(0) - b) ** 2 ) def grad_marg_l2(G): return reg_m1 * np.outer((G.sum(1) - a), np.ones(n)) + reg_m2 * np.outer( np.ones(m), (G.sum(0) - b) ) def marg_kl(G): return reg_m1 * nx_numpy.kl_div( G.sum(1), a, mass=True ) + reg_m2 * nx_numpy.kl_div(G.sum(0), b, mass=True) def grad_marg_kl(G): return reg_m1 * np.outer( np.log(G.sum(1) / a + 1e-16), np.ones(n) ) + reg_m2 * np.outer(np.ones(m), np.log(G.sum(0) / b + 1e-16)) def marg_tv(G): return reg_m1 * np.sum(np.abs(G.sum(1) - a)) + reg_m2 * np.sum( np.abs(G.sum(0) - b) ) def grad_marg_tv(G): return reg_m1 * np.outer(np.sign(G.sum(1) - a), np.ones(n)) + reg_m2 * np.outer( np.ones(m), np.sign(G.sum(0) - b) ) if regm_div == "kl": regm_fun = marg_kl grad_regm_fun = grad_marg_kl elif regm_div == "tv": regm_fun = marg_tv grad_regm_fun = grad_marg_tv else: regm_fun = marg_l2 grad_regm_fun = grad_marg_l2 def _func(G): G = G.reshape((m, n)) # compute loss val = np.sum(G * M) + regm_fun(G) if reg > 0: val = val + reg * reg_fun(G) # compute gradient grad = M + grad_regm_fun(G) if reg > 0: grad = grad + reg * grad_reg_fun(G) return val, grad.ravel() return _func [docs] def lbfgsb_unbalanced( a, b, M, reg, reg_m, c=None, reg_div="kl", regm_div="kl", G0=None, numItermax=1000, stopThr=1e-15, method="L-BFGS-B", verbose=False, log=False, ): r""" Solve the unbalanced optimal transport problem and return the OT plan using L-BFGS-B algorithm. The function solves the following optimization problem: .. math:: W = \arg \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \mathrm{reg} \mathrm{div}(\gamma, \mathbf{c}) + \mathrm{reg_{m1}} \cdot \mathrm{div_m}(\gamma \mathbf{1}, \mathbf{a}) + \mathrm{reg_{m2}} \cdot \mathrm{div_m}(\gamma^T \mathbf{1}, \mathbf{b}) s.t. \gamma \geq 0 where: - :math:`\mathbf{M}` is the (`dim_a`, `dim_b`) metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions - :math:`\mathbf{c}` is a reference distribution for the regularization - :math:`\mathrm{div_m}` is a divergence, either Kullback-Leibler divergence, or half-squared :math:`\ell_2` divergence, or Total variation - :math:`\mathrm{div}` is a divergence, either Kullback-Leibler divergence, or half-squared :math:`\ell_2` divergence .. note:: This function is backend-compatible and will work on arrays from all compatible backends. First, it converts all arrays into Numpy arrays, then uses the L-BFGS-B algorithm from scipy.optimize to solve the optimization problem. Parameters ---------- a : array-like (dim_a,) Unnormalized histogram of dimension `dim_a` If `a` is an empty list or array ([]), then `a` is set to uniform distribution. b : array-like (dim_b,) Unnormalized histogram of dimension `dim_b` If `b` is an empty list or array ([]), then `b` is set to uniform distribution. M : array-like (dim_a, dim_b) loss matrix reg: float regularization term >=0 c : array-like (dim_a, dim_b), optional (default = None) Reference measure for the regularization. If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`. reg_m: float or indexable object of length 1 or 2 Marginal relaxation term: nonnegative (including 0) but cannot be infinity. If :math:`\mathrm{reg_{m}}` is a scalar or an indexable object of length 1, then the same :math:`\mathrm{reg_{m}}` is applied to both marginal relaxations. If :math:`\mathrm{reg_{m}}` is an array, it must be a Numpy array. reg_div: string, optional Divergence used for regularization. Can take three values: 'entropy' (negative entropy), or 'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple of two calable functions returning the reg term and its derivative. Note that the callable functions should be able to handle Numpy arrays and not tesors from the backend regm_div: string, optional Divergence to quantify the difference between the marginals. Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation) G0: array-like (dim_a, dim_b) Initialization of the transport matrix numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (> 0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- gamma : (dim_a, dim_b) array-like Optimal transportation matrix for the given parameters log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> import numpy as np >>> a=[.5, .5] >>> b=[.5, .5] >>> M=[[1., 36.],[9., 4.]] >>> np.round(ot.unbalanced.lbfgsb_unbalanced(a, b, M, reg=0, reg_m=5, reg_div='kl', regm_div='kl'), 2) array([[0.45, 0. ], [0. , 0.34]]) >>> np.round(ot.unbalanced.lbfgsb_unbalanced(a, b, M, reg=0, reg_m=5, reg_div='l2', regm_div='l2'), 2) array([[0.4, 0. ], [0. , 0.1]]) References ---------- .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021). Unbalanced optimal transport through non-negative penalized linear regression. NeurIPS. See Also -------- ot.lp.emd2 : Unregularized OT loss ot.unbalanced.sinkhorn_unbalanced2 : Entropic regularized OT loss """ # wrap the callable function to handle numpy arrays if isinstance(reg_div, tuple): f0, df0 = reg_div try: f0(G0) df0(G0) except BaseException: warnings.warn( "The callable functions should be able to handle numpy arrays, wrapper ar added to handle this which comes with overhead" ) def f(x): return nx.to_numpy(f0(nx.from_numpy(x, type_as=M0))) def df(x): return nx.to_numpy(df0(nx.from_numpy(x, type_as=M0))) reg_div = (f, df) else: reg_div = reg_div.lower() if reg_div not in ["entropy", "kl", "l2"]: raise ValueError( "Unknown reg_div = {}. Must be either 'entropy', 'kl' or 'l2', or a tuple".format( reg_div ) ) regm_div = regm_div.lower() if regm_div not in ["kl", "l2", "tv"]: raise ValueError( "Unknown regm_div = {}. Must be either 'kl', 'l2' or 'tv'".format(regm_div) ) reg_m1, reg_m2 = get_parameter_pair(reg_m) M, a, b = list_to_array(M, a, b) nx = get_backend(M, a, b) M0 = M dim_a, dim_b = M.shape if len(a) == 0: a = nx.ones(dim_a, type_as=M) / dim_a if len(b) == 0: b = nx.ones(dim_b, type_as=M) / dim_b # convert to numpy a, b, M, reg_m1, reg_m2, reg = nx.to_numpy(a, b, M, reg_m1, reg_m2, reg) G0 = a[:, None] * b[None, :] if G0 is None else nx.to_numpy(G0) c = a[:, None] * b[None, :] if c is None else nx.to_numpy(c) _func = _get_loss_unbalanced(a, b, c, M, reg, reg_m1, reg_m2, reg_div, regm_div) res = minimize( _func, G0.ravel(), method=method, jac=True, bounds=Bounds(0, np.inf), tol=stopThr, options=dict(maxiter=numItermax, disp=verbose), ) G = nx.from_numpy(res.x.reshape(M.shape), type_as=M0) if log: log = {"cost": nx.sum(G * M), "res": res} log["total_cost"] = nx.from_numpy(res.fun, type_as=M0) return G, log else: return G [docs] def lbfgsb_unbalanced2( a, b, M, reg, reg_m, c=None, reg_div="kl", regm_div="kl", G0=None, returnCost="linear", numItermax=1000, stopThr=1e-15, method="L-BFGS-B", verbose=False, log=False, ): r""" Solve the unbalanced optimal transport problem and return the OT cost using L-BFGS-B. The function solves the following optimization problem: .. math:: \min_\gamma \quad \langle \gamma, \mathbf{M} \rangle_F + \mathrm{reg} \mathrm{div}(\gamma, \mathbf{c}) + \mathrm{reg_{m1}} \cdot \mathrm{div_m}(\gamma \mathbf{1}, \mathbf{a}) + \mathrm{reg_{m2}} \cdot \mathrm{div_m}(\gamma^T \mathbf{1}, \mathbf{b}) s.t. \gamma \geq 0 where: - :math:`\mathbf{M}` is the (`dim_a`, `dim_b`) metric cost matrix - :math:`\mathbf{a}` and :math:`\mathbf{b}` are source and target unbalanced distributions - :math:`\mathbf{c}` is a reference distribution for the regularization - :math:`\mathrm{div_m}` is a divergence, either Kullback-Leibler divergence, or half-squared :math:`\ell_2` divergence, or Total variation - :math:`\mathrm{div}` is a divergence, either Kullback-Leibler divergence, or half-squared :math:`\ell_2` divergence .. note:: This function is backend-compatible and will work on arrays from all compatible backends. First, it converts all arrays into Numpy arrays, then uses the L-BFGS-B algorithm from scipy.optimize to solve the optimization problem. Parameters ---------- a : array-like (dim_a,) Unnormalized histogram of dimension `dim_a` If `a` is an empty list or array ([]), then `a` is set to uniform distribution. b : array-like (dim_b,) Unnormalized histogram of dimension `dim_b` If `b` is an empty list or array ([]), then `b` is set to uniform distribution. M : array-like (dim_a, dim_b) loss matrix reg: float regularization term >=0 c : array-like (dim_a, dim_b), optional (default = None) Reference measure for the regularization. If None, then use :math:`\mathbf{c} = \mathbf{a} \mathbf{b}^T`. reg_m: float or indexable object of length 1 or 2 Marginal relaxation term: nonnegative (including 0) but cannot be infinity. If :math:`\mathrm{reg_{m}}` is a scalar or an indexable object of length 1, then the same :math:`\mathrm{reg_{m}}` is applied to both marginal relaxations. If :math:`\mathrm{reg_{m}}` is an array, it must be a Numpy array. reg_div: string, optional Divergence used for regularization. Can take three values: 'entropy' (negative entropy), or 'kl' (Kullback-Leibler) or 'l2' (half-squared) or a tuple of two calable functions returning the reg term and its derivative. Note that the callable functions should be able to handle Numpy arrays and not tesors from the backend regm_div: string, optional Divergence to quantify the difference between the marginals. Can take three values: 'kl' (Kullback-Leibler) or 'l2' (half-squared) or 'tv' (Total Variation) G0: array-like (dim_a, dim_b) Initialization of the transport matrix returnCost: string, optional (default = "linear") If `returnCost` = "linear", then return the linear part of the unbalanced OT loss. If `returnCost` = "total", then return the total unbalanced OT loss. numItermax : int, optional Max number of iterations stopThr : float, optional Stop threshold on error (> 0) verbose : bool, optional Print information along iterations log : bool, optional record log if True Returns ------- ot_cost : array-like the OT cost between :math:`\mathbf{a}` and :math:`\mathbf{b}` log : dict log dictionary returned only if `log` is `True` Examples -------- >>> import ot >>> import numpy as np >>> a=[.5, .5] >>> b=[.5, .5] >>> M=[[1., 36.],[9., 4.]] >>> np.round(ot.unbalanced.lbfgsb_unbalanced2(a, b, M, reg=0, reg_m=5, reg_div='kl', regm_div='kl'), 2) 1.79 >>> np.round(ot.unbalanced.lbfgsb_unbalanced2(a, b, M, reg=0, reg_m=5, reg_div='l2', regm_div='l2'), 2) 0.8 References ---------- .. [41] Chapel, L., Flamary, R., Wu, H., Févotte, C., and Gasso, G. (2021). Unbalanced optimal transport through non-negative penalized linear regression. NeurIPS. See Also -------- ot.lp.emd2 : Unregularized OT loss ot.unbalanced.sinkhorn_unbalanced2 : Entropic regularized OT loss """ _, log_lbfgs = lbfgsb_unbalanced( a=a, b=b, M=M, reg=reg, reg_m=reg_m, c=c, reg_div=reg_div, regm_div=regm_div, G0=G0, numItermax=numItermax, stopThr=stopThr, method=method, verbose=verbose, log=True, ) if returnCost == "linear": cost = log_lbfgs["cost"] elif returnCost == "total": cost = log_lbfgs["total_cost"] else: raise ValueError("Unknown returnCost = {}".format(returnCost)) if log: return cost, log_lbfgs else: return cost
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4