Pinecone is a vector database with broad functionality.
This notebook shows how to use functionality related to the Pinecone
vector database.
To use the PineconeVectorStore
you first need to install the partner package, as well as the other packages used throughout this notebook.
pip install -qU langchain langchain-pinecone langchain-openai
Migration note: if you are migrating from the langchain_community.vectorstores
implementation of Pinecone, you may need to remove your pinecone-client
v2 dependency before installing langchain-pinecone
, which relies on pinecone-client
v6.
Create a new Pinecone account, or sign into your existing one, and create an API key to use in this notebook.
import getpass
import os
from pinecone import Pinecone
if not os.getenv("PINECONE_API_KEY"):
os.environ["PINECONE_API_KEY"] = getpass.getpass("Enter your Pinecone API key: ")
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
pc = Pinecone(api_key=pinecone_api_key)
If you want to get automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
InitializationBefore initializing our vector store, let's connect to a Pinecone index. If one named index_name
doesn't exist, it will be created.
from pinecone import ServerlessSpec
index_name = "langchain-test-index"
if not pc.has_index(index_name):
pc.create_index(
name=index_name,
dimension=1536,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
index = pc.Index(index_name)
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
from langchain_pinecone import PineconeVectorStore
vector_store = PineconeVectorStore(index=index, embedding=embeddings)
Manage vector store
Once you have created your vector store, we can interact with it by adding and deleting different items.
Add items to vector storeWe can add items to our vector store by using the add_documents
function.
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
Delete items from vector store
vector_store.delete(ids=[uuids[-1]])
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directlyPerforming a simple similarity search can be done as follows:
results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
filter={"source": "tweet"},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
Similarity search with score
You can also search with score:
results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, filter={"source": "news"}
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
Other search methods
There are more search methods (such as MMR) not listed in this notebook, to find all of them be sure to read the API reference.
Query by turning into retrieverYou can also transform the vector store into a retriever for easier usage in your chains.
retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"k": 1, "score_threshold": 0.4},
)
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
API referenceFor detailed documentation of all features and configurations head to the API reference: https://python.langchain.com/api_reference/pinecone/vectorstores/langchain_pinecone.vectorstores.PineconeVectorStore.html
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4