A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://python.langchain.com/docs/integrations/tools/scrapegraph/ below:

ScrapeGraph | 🦜️🔗 LangChain

ScrapeGraph

This notebook provides a quick overview for getting started with ScrapeGraph tools. For detailed documentation of all ScrapeGraph features and configurations head to the API reference.

For more information about ScrapeGraph AI:

Overview Integration details Tool features Tool Purpose Input Output SmartScraperTool Extract structured data from websites URL + prompt JSON SmartCrawlerTool Extract data from multiple pages with crawling URL + prompt + crawl options JSON MarkdownifyTool Convert webpages to markdown URL Markdown text GetCreditsTool Check API credits None Credit info Setup

The integration requires the following packages:

%pip install --quiet -U langchain-scrapegraph
Note: you may need to restart the kernel to use updated packages.
Credentials

You'll need a ScrapeGraph AI API key to use these tools. Get one at scrapegraphai.com.

import getpass
import os

if not os.environ.get("SGAI_API_KEY"):
os.environ["SGAI_API_KEY"] = getpass.getpass("ScrapeGraph AI API key:\n")

It's also helpful (but not needed) to set up LangSmith for best-in-class observability:

os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass()
Instantiation

Here we show how to instantiate instances of the ScrapeGraph tools:

from scrapegraph_py.logger import sgai_logger
import json

from langchain_scrapegraph.tools import (
GetCreditsTool,
MarkdownifyTool,
SmartCrawlerTool,
SmartScraperTool,
)

sgai_logger.set_logging(level="INFO")

smartscraper = SmartScraperTool()
smartcrawler = SmartCrawlerTool()
markdownify = MarkdownifyTool()
credits = GetCreditsTool()
Invocation Invoke directly with args

Let's try each tool individually:

SmartCrawler Tool

The SmartCrawlerTool allows you to crawl multiple pages from a website and extract structured data with advanced crawling options like depth control, page limits, and domain restrictions.


result = smartscraper.invoke(
{
"user_prompt": "Extract the company name and description",
"website_url": "https://scrapegraphai.com",
}
)
print("SmartScraper Result:", result)


markdown = markdownify.invoke({"website_url": "https://scrapegraphai.com"})
print("\nMarkdownify Result (first 200 chars):", markdown[:200])


url = "https://scrapegraphai.com/"
prompt = (
"What does the company do? and I need text content from their privacy and terms"
)


result_crawler = smartcrawler.invoke(
{
"url": url,
"prompt": prompt,
"cache_website": True,
"depth": 2,
"max_pages": 2,
"same_domain_only": True,
}
)

print("\nSmartCrawler Result:")
print(json.dumps(result_crawler, indent=2))


credits_info = credits.invoke({})
print("\nCredits Info:", credits_info)
SmartScraper Result: {'company_name': 'ScrapeGraphAI', 'description': "ScrapeGraphAI is a powerful AI web scraping tool that turns entire websites into clean, structured data through a simple API. It's designed to help developers and AI companies extract valuable data from websites efficiently and transform it into formats that are ready for use in LLM applications and data analysis."}

Markdownify Result (first 200 chars): [![ScrapeGraphAI Logo](https://scrapegraphai.com/images/scrapegraphai_logo.svg)ScrapeGraphAI](https://scrapegraphai.com/)

PartnersPricingFAQ[Blog](https://scrapegraphai.com/blog)DocsLog inSign up

Op
LocalScraper Result: {'company_name': 'Company Name', 'description': 'We are a technology company focused on AI solutions.', 'contact': {'email': 'contact@example.com', 'phone': '(555) 123-4567'}}

Credits Info: {'remaining_credits': 49679, 'total_credits_used': 914}

from scrapegraph_py.logger import sgai_logger
import json

from langchain_scrapegraph.tools import SmartCrawlerTool

sgai_logger.set_logging(level="INFO")


tool = SmartCrawlerTool()


url = "https://scrapegraphai.com/"
prompt = (
"What does the company do? and I need text content from their privacy and terms"
)


result = tool.invoke(
{
"url": url,
"prompt": prompt,
"cache_website": True,
"depth": 2,
"max_pages": 2,
"same_domain_only": True,
}
)

print(json.dumps(result, indent=2))
Invoke with ToolCall

We can also invoke the tool with a model-generated ToolCall:

model_generated_tool_call = {
"args": {
"user_prompt": "Extract the main heading and description",
"website_url": "https://scrapegraphai.com",
},
"id": "1",
"name": smartscraper.name,
"type": "tool_call",
}
smartscraper.invoke(model_generated_tool_call)
ToolMessage(content='{"main_heading": "Get the data you need from any website", "description": "Easily extract and gather information with just a few lines of code with a simple api. Turn websites into clean and usable structured data."}', name='SmartScraper', tool_call_id='1')
Chaining

Let's use our tools with an LLM to analyze a website:

pip install -qU "langchain[google-genai]"
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain.chat_models import init_chat_model

llm = init_chat_model("gemini-2.5-flash", model_provider="google_genai")
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableConfig, chain

prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that can use tools to extract structured information from websites.",
),
("human", "{user_input}"),
("placeholder", "{messages}"),
]
)

llm_with_tools = llm.bind_tools([smartscraper], tool_choice=smartscraper.name)
llm_chain = prompt | llm_with_tools


@chain
def tool_chain(user_input: str, config: RunnableConfig):
input_ = {"user_input": user_input}
ai_msg = llm_chain.invoke(input_, config=config)
tool_msgs = smartscraper.batch(ai_msg.tool_calls, config=config)
return llm_chain.invoke({**input_, "messages": [ai_msg, *tool_msgs]}, config=config)


tool_chain.invoke(
"What does ScrapeGraph AI do? Extract this information from their website https://scrapegraphai.com"
)
AIMessage(content='ScrapeGraph AI is an AI-powered web scraping tool that efficiently extracts and converts website data into structured formats via a simple API. It caters to developers, data scientists, and AI researchers, offering features like easy integration, support for dynamic content, and scalability for large projects. It supports various website types, including business, e-commerce, and educational sites. Contact: contact@scrapegraphai.com.', additional_kwargs={'tool_calls': [{'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'function': {'arguments': '{"user_prompt":"Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.","website_url":"https://scrapegraphai.com"}', 'name': 'SmartScraper'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 47, 'prompt_tokens': 480, 'total_tokens': 527, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_c7ca0ebaca', 'finish_reason': 'stop', 'logprobs': None}, id='run-45a12c86-d499-4273-8c59-0db926799bc7-0', tool_calls=[{'name': 'SmartScraper', 'args': {'user_prompt': 'Extract details about the products, services, and key features offered by ScrapeGraph AI, as well as any unique selling points or innovations mentioned on the website.', 'website_url': 'https://scrapegraphai.com'}, 'id': 'call_shkRPyjyAtfjH9ffG5rSy9xj', 'type': 'tool_call'}], usage_metadata={'input_tokens': 480, 'output_tokens': 47, 'total_tokens': 527, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})
API reference

For detailed documentation of all ScrapeGraph features and configurations head to the Langchain API reference.

Or to the official SDK repo.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4