This notebook goes over how to use Langchain with YandexGPT embeddings models.
To use, you should have the yandexcloud
python package installed.
%pip install --upgrade --quiet yandexcloud
First, you should create service account with the ai.languageModels.user
role.
Next, you have two authentication options:
iam_token
or in an environment variable YC_IAM_TOKEN
.api_key
or in an environment variable YC_API_KEY
.To specify the model you can use model_uri
parameter, see the documentation for more details.
By default, the latest version of text-search-query
is used from the folder specified in the parameter folder_id
or YC_FOLDER_ID
environment variable.
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings()
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
[-0.021392822265625,
0.096435546875,
-0.046966552734375,
-0.0183258056640625,
-0.00555419921875]
[-0.021392822265625,
0.096435546875,
-0.046966552734375,
-0.0183258056640625,
-0.00555419921875]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4