info
langchain-localai
is a 3rd party integration package for LocalAI. It provides a simple way to use LocalAI services in Langchain.
The source code is available on Github
Let's load the LocalAI Embedding class. In order to use the LocalAI Embedding class, you need to have the LocalAI service hosted somewhere and configure the embedding models. See the documentation at https://localai.io/basics/getting_started/index.html and https://localai.io/features/embeddings/index.html.
%pip install -U langchain-localai
from langchain_localai import LocalAIEmbeddings
embeddings = LocalAIEmbeddings(
openai_api_base="http://localhost:8080", model="embedding-model-name"
)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
Let's load the LocalAI Embedding class with first generation models (e.g. text-search-ada-doc-001/text-search-ada-query-001). Note: These are not recommended models - see here
from langchain_community.embeddings import LocalAIEmbeddings
embeddings = LocalAIEmbeddings(
openai_api_base="http://localhost:8080", model="embedding-model-name"
)
text = "This is a test document."
query_result = embeddings.embed_query(text)
doc_result = embeddings.embed_documents([text])
import os
os.environ["OPENAI_PROXY"] = "http://proxy.yourcompany.com:8080"
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4