A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://python.langchain.com/docs/integrations/llms/fireworks below:

Fireworks | 🦜️🔗 LangChain

Fireworks

Fireworks accelerates product development on generative AI by creating an innovative AI experiment and production platform.

This example goes over how to use LangChain to interact with Fireworks models.

Overview Integration details Setup Credentials

Sign in to Fireworks AI for the an API Key to access our models, and make sure it is set as the FIREWORKS_API_KEY environment variable. 3. Set up your model using a model id. If the model is not set, the default model is fireworks-llama-v2-7b-chat. See the full, most up-to-date model list on fireworks.ai.

import getpass
import os

if "FIREWORKS_API_KEY" not in os.environ:
os.environ["FIREWORKS_API_KEY"] = getpass.getpass("Fireworks API Key:")
Installation

You need to install the langchain-fireworks python package for the rest of the notebook to work.

%pip install -qU langchain-fireworks
Note: you may need to restart the kernel to use updated packages.
Instantiation
from langchain_fireworks import Fireworks


llm = Fireworks(
model="accounts/fireworks/models/llama-v3p1-8b-instruct",
base_url="https://api.fireworks.ai/inference/v1/completions",
)
Invocation

You can call the model directly with string prompts to get completions.

output = llm.invoke("Who's the best quarterback in the NFL?")
print(output)
 If Manningville Station, Lions rookie EJ Manuel's
Invoking with multiple prompts

output = llm.generate(
[
"Who's the best cricket player in 2016?",
"Who's the best basketball player in the league?",
]
)
print(output.generations)
[[Generation(text=" We're not just asking, we've done some research. We'")], [Generation(text=' The conversation is dominated by Kobe Bryant, Dwyane Wade,')]]
Invoking with additional parameters

llm = Fireworks(
model="accounts/fireworks/models/llama-v3p1-8b-instruct",
temperature=0.7,
max_tokens=15,
top_p=1.0,
)
print(llm.invoke("What's the weather like in Kansas City in December?"))

December is a cold month in Kansas City, with temperatures of
Chaining

You can use the LangChain Expression Language to create a simple chain with non-chat models.

from langchain_core.prompts import PromptTemplate
from langchain_fireworks import Fireworks

llm = Fireworks(
model="accounts/fireworks/models/llama-v3p1-8b-instruct",
temperature=0.7,
max_tokens=15,
top_p=1.0,
)
prompt = PromptTemplate.from_template("Tell me a joke about {topic}?")
chain = prompt | llm

print(chain.invoke({"topic": "bears"}))
 What do you call a bear with no teeth? A gummy bear!
Streaming

You can stream the output, if you want.

for token in chain.stream({"topic": "bears"}):
print(token, end="", flush=True)
 Why do bears hate shoes so much? They like to run around in their
API reference

For detailed documentation of all Fireworks LLM features and configurations head to the API reference: https://python.langchain.com/api_reference/fireworks/llms/langchain_fireworks.llms.Fireworks.html#langchain_fireworks.llms.Fireworks


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4