A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://python.langchain.com/docs/integrations/llms/ctransformers below:

C Transformers | 🦜️🔗 LangChain

C Transformers

The C Transformers library provides Python bindings for GGML models.

This example goes over how to use LangChain to interact with C Transformers models.

Install

%pip install --upgrade --quiet  ctransformers

Load Model

from langchain_community.llms import CTransformers

llm = CTransformers(model="marella/gpt-2-ggml")

Generate Text

print(llm.invoke("AI is going to"))

Streaming

from langchain_core.callbacks import StreamingStdOutCallbackHandler

llm = CTransformers(
model="marella/gpt-2-ggml", callbacks=[StreamingStdOutCallbackHandler()]
)

response = llm.invoke("AI is going to")

LLMChain

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate

template = """Question: {question}

Answer:"""

prompt = PromptTemplate.from_template(template)

llm_chain = LLMChain(prompt=prompt, llm=llm)

response = llm_chain.run("What is AI?")

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4