Google El Carro Oracle Operator offers a way to run Oracle databases in Kubernetes as a portable, open source, community driven, no vendor lock-in container orchestration system. El Carro provides a powerful declarative API for comprehensive and consistent configuration and deployment as well as for real-time operations and monitoring. Extend your Oracle database's capabilities to build AI-powered experiences by leveraging the El Carro Langchain integration.
This guide goes over how to use El Carro Langchain integration to save, load and delete langchain documents with ElCarroLoader
and ElCarroDocumentSaver
. This integration works for any Oracle database, regardless of where it is running.
Learn more about the package on GitHub.
Before You BeginPlease complete the Getting Started section of the README to set up your El Carro Oracle database.
🦜🔗 Library InstallationThe integration lives in its own langchain-google-el-carro
package, so we need to install it.
%pip install --upgrade --quiet langchain-google-el-carro
Basic Usage Set Up Oracle Database Connection
Fill out the following variable with your Oracle database connections details.
HOST = "127.0.0.1"
PORT = 3307
DATABASE = "my-database"
TABLE_NAME = "message_store"
USER = "my-user"
PASSWORD = input("Please provide a password to be used for the database user: ")
If you are using El Carro, you can find the hostname and port values in the status of the El Carro Kubernetes instance. Use the user password you created for your PDB.
Example Ouput:
kubectl get -w instances.oracle.db.anthosapis.com -n db
NAME DB ENGINE VERSION EDITION ENDPOINT URL DB NAMES BACKUP ID READYSTATUS READYREASON DBREADYSTATUS DBREADYREASON
mydb Oracle 18c Express mydb-svc.db 34.71.69.25:6021 ['pdbname'] TRUE CreateComplete True CreateComplete
ElCarroEngine Connection Pool
ElCarroEngine
configures a connection pool to your Oracle database, enabling successful connections from your application and following industry best practices.
from langchain_google_el_carro import ElCarroEngine
elcarro_engine = ElCarroEngine.from_instance(
db_host=HOST,
db_port=PORT,
db_name=DATABASE,
db_user=USER,
db_password=PASSWORD,
)
Initialize a table
Initialize a table of default schema via elcarro_engine.init_document_table(<table_name>)
. Table Columns:
elcarro_engine.drop_document_table(TABLE_NAME)
elcarro_engine.init_document_table(
table_name=TABLE_NAME,
)
Save documents
Save langchain documents with ElCarroDocumentSaver.add_documents(<documents>)
. To initialize ElCarroDocumentSaver
class you need to provide 2 things:
elcarro_engine
- An instance of a ElCarroEngine
engine.table_name
- The name of the table within the Oracle database to store langchain documents.from langchain_core.documents import Document
from langchain_google_el_carro import ElCarroDocumentSaver
doc = Document(
page_content="Banana",
metadata={"type": "fruit", "weight": 100, "organic": 1},
)
saver = ElCarroDocumentSaver(
elcarro_engine=elcarro_engine,
table_name=TABLE_NAME,
)
saver.add_documents([doc])
Load documents
Load langchain documents with ElCarroLoader.load()
or ElCarroLoader.lazy_load()
. lazy_load
returns a generator that only queries database during the iteration. To initialize ElCarroLoader
class you need to provide:
elcarro_engine
- An instance of a ElCarroEngine
engine.table_name
- The name of the table within the Oracle database to store langchain documents.from langchain_google_el_carro import ElCarroLoader
loader = ElCarroLoader(elcarro_engine=elcarro_engine, table_name=TABLE_NAME)
docs = loader.lazy_load()
for doc in docs:
print("Loaded documents:", doc)
Load documents via query
Other than loading documents from a table, we can also choose to load documents from a view generated from a SQL query. For example:
from langchain_google_el_carro import ElCarroLoader
loader = ElCarroLoader(
elcarro_engine=elcarro_engine,
query=f"SELECT * FROM {TABLE_NAME} WHERE json_value(langchain_metadata, '$.organic') = '1'",
)
onedoc = loader.load()
print(onedoc)
The view generated from SQL query can have different schema than default table. In such cases, the behavior of ElCarroLoader is the same as loading from table with non-default schema. Please refer to section Load documents with customized document page content & metadata.
Delete documentsDelete a list of langchain documents from an Oracle table with ElCarroDocumentSaver.delete(<documents>)
.
For a table with a default schema (page_content, langchain_metadata), the deletion criteria is:
A row
should be deleted if there exists a document
in the list, such that
document.page_content
equals row[page_content]
document.metadata
equals row[langchain_metadata]
docs = loader.load()
print("Documents before delete:", docs)
saver.delete(onedoc)
print("Documents after delete:", loader.load())
Advanced Usage Load documents with customized document page content & metadata
First we prepare an example table with non-default schema, and populate it with some arbitrary data.
import sqlalchemy
create_table_query = f"""CREATE TABLE {TABLE_NAME} (
fruit_id NUMBER GENERATED BY DEFAULT AS IDENTITY (START WITH 1),
fruit_name VARCHAR2(100) NOT NULL,
variety VARCHAR2(50),
quantity_in_stock NUMBER(10) NOT NULL,
price_per_unit NUMBER(6,2) NOT NULL,
organic NUMBER(3) NOT NULL
)"""
elcarro_engine.drop_document_table(TABLE_NAME)
with elcarro_engine.connect() as conn:
conn.execute(sqlalchemy.text(create_table_query))
conn.commit()
conn.execute(
sqlalchemy.text(
f"""
INSERT INTO {TABLE_NAME} (fruit_name, variety, quantity_in_stock, price_per_unit, organic)
VALUES ('Apple', 'Granny Smith', 150, 0.99, 1)
"""
)
)
conn.execute(
sqlalchemy.text(
f"""
INSERT INTO {TABLE_NAME} (fruit_name, variety, quantity_in_stock, price_per_unit, organic)
VALUES ('Banana', 'Cavendish', 200, 0.59, 0)
"""
)
)
conn.execute(
sqlalchemy.text(
f"""
INSERT INTO {TABLE_NAME} (fruit_name, variety, quantity_in_stock, price_per_unit, organic)
VALUES ('Orange', 'Navel', 80, 1.29, 1)
"""
)
)
conn.commit()
If we still load langchain documents with default parameters of ElCarroLoader
from this example table, the page_content
of loaded documents will be the first column of the table, and metadata
will be consisting of key-value pairs of all the other columns.
loader = ElCarroLoader(
elcarro_engine=elcarro_engine,
table_name=TABLE_NAME,
)
loaded_docs = loader.load()
print(f"Loaded Documents: [{loaded_docs}]")
We can specify the content and metadata we want to load by setting the content_columns
and metadata_columns
when initializing the ElCarroLoader
.
content_columns
: The columns to write into the page_content
of the document.metadata_columns
: The columns to write into the metadata
of the document.For example here, the values of columns in content_columns
will be joined together into a space-separated string, as page_content
of loaded documents, and metadata
of loaded documents will only contain key-value pairs of columns specified in metadata_columns
.
loader = ElCarroLoader(
elcarro_engine=elcarro_engine,
table_name=TABLE_NAME,
content_columns=[
"variety",
"quantity_in_stock",
"price_per_unit",
"organic",
],
metadata_columns=["fruit_id", "fruit_name"],
)
loaded_docs = loader.load()
print(f"Loaded Documents: [{loaded_docs}]")
Save document with customized page content & metadata
In order to save langchain document into table with customized metadata fields we need first create such a table via ElCarroEngine.init_document_table()
, and specify the list of metadata_columns
we want it to have. In this example, the created table will have table columns:
We can use the following parameters with elcarro_engine.init_document_table()
to create the table:
table_name
: The name of the table within the Oracle database to store langchain documents.metadata_columns
: A list of sqlalchemy.Column
indicating the list of metadata columns we need.content_column
: column name to store page_content
of langchain document. Default: "page_content", "VARCHAR2(4000)"
metadata_json_column
: column name to store extra JSON metadata
of langchain document. Default: "langchain_metadata", "VARCHAR2(4000)"
.elcarro_engine.drop_document_table(TABLE_NAME)
elcarro_engine.init_document_table(
table_name=TABLE_NAME,
metadata_columns=[
sqlalchemy.Column("type", sqlalchemy.dialects.oracle.VARCHAR2(200)),
sqlalchemy.Column("weight", sqlalchemy.INT),
],
content_column="content",
metadata_json_column="extra_json_metadata",
)
Save documents with ElCarroDocumentSaver.add_documents(<documents>)
. As you can see in this example,
document.page_content
will be saved into content
column.document.metadata.type
will be saved into type
column.document.metadata.weight
will be saved into weight
column.document.metadata.organic
will be saved into extra_json_metadata
column in JSON format.doc = Document(
page_content="Banana",
metadata={"type": "fruit", "weight": 100, "organic": 1},
)
print(f"Original Document: [{doc}]")
saver = ElCarroDocumentSaver(
elcarro_engine=elcarro_engine,
table_name=TABLE_NAME,
content_column="content",
metadata_json_column="extra_json_metadata",
)
saver.add_documents([doc])
loader = ElCarroLoader(
elcarro_engine=elcarro_engine,
table_name=TABLE_NAME,
content_columns=["content"],
metadata_columns=[
"type",
"weight",
],
metadata_json_column="extra_json_metadata",
)
loaded_docs = loader.load()
print(f"Loaded Document: [{loaded_docs[0]}]")
Delete documents with customized page content & metadata
We can also delete documents from table with customized metadata columns via ElCarroDocumentSaver.delete(<documents>)
. The deletion criteria is:
A row
should be deleted if there exists a document
in the list, such that
document.page_content
equals row[page_content]
k
in document.metadata
document.metadata[k]
equals row[k]
or document.metadata[k]
equals row[langchain_metadata][k]
row
but not in document.metadata
.loader = ElCarroLoader(elcarro_engine=elcarro_engine, table_name=TABLE_NAME)
saver.delete(loader.load())
print(f"Documents left: {len(loader.load())}")
More examples
Please look at demo_doc_loader_basic.py and demo_doc_loader_advanced.py for complete code examples.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4