Google Drive is a file storage and synchronization service developed by Google.
This notebook covers how to load documents from Google Drive
. Currently, only Google Docs
are supported.
pip install --upgrade google-api-python-client google-auth-httplib2 google-auth-oauthlib
Set the environmental variable GOOGLE_APPLICATION_CREDENTIALS
to an empty string (""
).
By default, the GoogleDriveLoader
expects the credentials.json
file to be located at ~/.credentials/credentials.json
, but this is configurable using the credentials_path
keyword argument. Same thing with token.json
- default path: ~/.credentials/token.json
, constructor param: token_path
.
The first time you use GoogleDriveLoader, you will be displayed with the consent screen in your browser for user authentication. After authentication, token.json
will be created automatically at the provided or the default path. Also, if there is already a token.json
at that path, then you will not be prompted for authentication.
GoogleDriveLoader
can load from a list of Google Docs document ids or a folder id. You can obtain your folder and document id from the URL:
"1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5"
"1bfaMQ18_i56204VaQDVeAFpqEijJTgvurupdEDiaUQw"
%pip install --upgrade --quiet langchain-google-community[drive]
from langchain_google_community import GoogleDriveLoader
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
token_path="/path/where/you/want/token/to/be/created/google_token.json",
recursive=False,
)
When you pass a folder_id
by default all files of type document, sheet and pdf are loaded. You can modify this behaviour by passing a file_types
argument
loader = GoogleDriveLoader(
folder_id="1yucgL9WGgWZdM1TOuKkeghlPizuzMYb5",
file_types=["document", "sheet"],
recursive=False,
)
Passing in Optional File Loadersβ
When processing files other than Google Docs and Google Sheets, it can be helpful to pass an optional file loader to GoogleDriveLoader
. If you pass in a file loader, that file loader will be used on documents that do not have a Google Docs or Google Sheets MIME type. Here is an example of how to load an Excel document from Google Drive using a file loader.
from langchain_community.document_loaders import UnstructuredFileIOLoader
from langchain_google_community import GoogleDriveLoader
file_id = "1x9WBtFPWMEAdjcJzPScRsjpjQvpSo_kz"
loader = GoogleDriveLoader(
file_ids=[file_id],
file_loader_cls=UnstructuredFileIOLoader,
file_loader_kwargs={"mode": "elements"},
)
You can also process a folder with a mix of files and Google Docs/Sheets using the following pattern:
folder_id = "1asMOHY1BqBS84JcRbOag5LOJac74gpmD"
loader = GoogleDriveLoader(
folder_id=folder_id,
file_loader_cls=UnstructuredFileIOLoader,
file_loader_kwargs={"mode": "elements"},
)
Extended usageβ
An external (unofficial) component can manage the complexity of Google Drive : langchain-googledrive
It's compatible with the Μlangchain_community.document_loaders.GoogleDriveLoader
and can be used in its place.
To be compatible with containers, the authentication uses an environment variable ΜGOOGLE_ACCOUNT_FILE
to credential file (for user or service).
%pip install --upgrade --quiet langchain-googledrive
from langchain_googledrive.document_loaders import GoogleDriveLoader
loader = GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
num_results=2,
)
By default, all files with these mime-type can be converted to Document
.
It's possible to update or customize this. See the documentation of GDriveLoader
.
But, the corresponding packages must be installed.
%pip install --upgrade --quiet unstructured
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
Loading auth Identitiesβ
Authorized identities for each file ingested by Google Drive Loader can be loaded along with metadata per Document.
from langchain_google_community import GoogleDriveLoader
loader = GoogleDriveLoader(
folder_id=folder_id,
load_auth=True,
)
doc = loader.load()
You can pass load_auth=True, to add Google Drive document access identities to metadata.
Loading extended metadataβFollowing extra fields can also be fetched within metadata of each Document:
from langchain_google_community import GoogleDriveLoader
loader = GoogleDriveLoader(
folder_id=folder_id,
load_extended_matadata=True,
)
doc = loader.load()
You can pass load_extended_matadata=True, to add Google Drive document extended details to metadata.
Customize the search patternβAll parameter compatible with Google list()
API can be set.
To specify the new pattern of the Google request, you can use a PromptTemplate()
. The variables for the prompt can be set with kwargs
in the constructor. Some pre-formated request are proposed (use {query}
, {folder_id}
and/or {mime_type}
):
You can customize the criteria to select the files. A set of predefined filter are proposed:
template description gdrive-all-in-folder Return all compatible files from afolder_id
gdrive-query Search query
in all drives gdrive-by-name Search file with name query
gdrive-query-in-folder Search query
in folder_id
(and sub-folders if recursive=true
) gdrive-mime-type Search a specific mime_type
gdrive-mime-type-in-folder Search a specific mime_type
in folder_id
gdrive-query-with-mime-type Search query
with a specific mime_type
gdrive-query-with-mime-type-and-folder Search query
with a specific mime_type
and in folder_id
loader = GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
template="gdrive-query",
query="machine learning",
num_results=2,
supportsAllDrives=False,
)
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
You can customize your pattern.
from langchain_core.prompts.prompt import PromptTemplate
loader = GoogleDriveLoader(
folder_id=folder_id,
recursive=False,
template=PromptTemplate(
input_variables=["query", "query_name"],
template="fullText contains '{query}' and name contains '{query_name}' and trashed=false",
),
query="machine learning",
query_name="ML",
num_results=2,
)
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
The conversion can manage in Markdown format:
Set the attribut return_link
to True
to export links.
The parameter mode accepts different values:
The parameter gslide_mode
accepts different values:
loader = GoogleDriveLoader(
template="gdrive-mime-type",
mime_type="application/vnd.google-apps.presentation",
gslide_mode="slide",
num_results=2,
)
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
The parameter gsheet_mode
accepts different values:
"single"
: Generate one document by line"elements"
: one document with markdown array and <PAGE BREAK> tags.loader = GoogleDriveLoader(
template="gdrive-mime-type",
mime_type="application/vnd.google-apps.spreadsheet",
gsheet_mode="elements",
num_results=2,
)
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
Advanced usageβ
All Google File have a 'description' in the metadata. This field can be used to memorize a summary of the document or others indexed tags (See method lazy_update_description_with_summary()
).
If you use the mode="snippet"
, only the description will be used for the body. Else, the metadata['summary']
has the field.
Sometime, a specific filter can be used to extract some information from the filename, to select some files with specific criteria. You can use a filter.
Sometimes, many documents are returned. It's not necessary to have all documents in memory at the same time. You can use the lazy versions of methods, to get one document at a time. It's better to use a complex query in place of a recursive search. For each folder, a query must be applied if you activate recursive=True
.
import os
loader = GoogleDriveLoader(
gdrive_api_file=os.environ["GOOGLE_ACCOUNT_FILE"],
num_results=2,
template="gdrive-query",
filter=lambda search, file: "#test" not in file.get("description", ""),
query="machine learning",
supportsAllDrives=False,
)
for doc in loader.load():
print("---")
print(doc.page_content.strip()[:60] + "...")
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4