ModelScope (Home | GitHub) is built upon the notion of βModel-as-a-Serviceβ (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation.
This will help you get started with ModelScope Chat Endpoint.
Overviewβ Integration detailsβ SetupβTo access ModelScope chat endpoint you'll need to create a ModelScope account, get an SDK token, and install the langchain-modelscope-integration
integration package.
Head to ModelScope to sign up to ModelScope and generate an SDK token. Once you've done this set the MODELSCOPE_SDK_TOKEN
environment variable:
import getpass
import os
if not os.getenv("MODELSCOPE_SDK_TOKEN"):
os.environ["MODELSCOPE_SDK_TOKEN"] = getpass.getpass(
"Enter your ModelScope SDK token: "
)
Installationβ
The LangChain ModelScope integration lives in the langchain-modelscope-integration
package:
%pip install -qU langchain-modelscope-integration
Instantiationβ
Now we can instantiate our model object and generate chat completions:
from langchain_modelscope import ModelScopeChatEndpoint
llm = ModelScopeChatEndpoint(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
temperature=0,
max_tokens=1024,
timeout=60,
max_retries=2,
)
Invocationβ
messages = [
(
"system",
"You are a helpful assistant that translates English to Chinese. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='ζεζ¬’ηΌη¨γ', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 3, 'prompt_tokens': 33, 'total_tokens': 36, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'qwen2.5-coder-32b-instruct', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-60bb3461-60ae-4c0b-8997-ab55ef77fcd6-0', usage_metadata={'input_tokens': 33, 'output_tokens': 3, 'total_tokens': 36, 'input_token_details': {}, 'output_token_details': {}})
Chainingβ
We can chain our model with a prompt template like so:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "Chinese",
"input": "I love programming.",
}
)
AIMessage(content='ζεζ¬’ηΌη¨γ', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 3, 'prompt_tokens': 28, 'total_tokens': 31, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'qwen2.5-coder-32b-instruct', 'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}, id='run-9f011a3a-9a11-4759-8d16-5b1843a78862-0', usage_metadata={'input_tokens': 28, 'output_tokens': 3, 'total_tokens': 31, 'input_token_details': {}, 'output_token_details': {}})
API referenceβ
For detailed documentation of all ModelScopeChatEndpoint features and configurations head to the reference: https://modelscope.cn/docs/model-service/API-Inference/intro
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4