Applications based on LLMs frequently entail extracting data from databases or files, like PDFs, and converting it into a format that LLMs can utilize. In LangChain, this usually involves creating Document objects, which encapsulate the extracted text (page_content
) along with metadata—a dictionary containing details about the document, such as the author's name or the date of publication.
Document
objects are often formatted into prompts that are fed into an LLM, allowing the LLM to use the information in the Document
to generate a desired response (e.g., summarizing the document). Documents
can be either used immediately or indexed into a vectorstore for future retrieval and use.
The main abstractions for Document Loading are:
Component Description Document Containstext
and metadata
BaseLoader Use to convert raw data into Documents
Blob A representation of binary data that's located either in a file or in memory BaseBlobParser Logic to parse a Blob
to yield Document
objects
This guide will demonstrate how to write custom document loading and file parsing logic; specifically, we'll see how to:
BaseLoader
.BaseBlobParser
and use it in conjunction with Blob
and BlobLoaders
. This is useful primarily when working with files.A document loader can be implemented by sub-classing from a BaseLoader
which provides a standard interface for loading documents.
lazy_load
load Used to load all the documents into memory eagerly. Use for prototyping or interactive work. aload Used to load all the documents into memory eagerly. Use for prototyping or interactive work. Added in 2024-04 to LangChain.
load
methods is a convenience method meant solely for prototyping work -- it just invokes list(self.lazy_load())
.alazy_load
has a default implementation that will delegate to lazy_load
. If you're using async, we recommend overriding the default implementation and providing a native async implementation.important
When implementing a document loader do NOT provide parameters via the lazy_load
or alazy_load
methods.
All configuration is expected to be passed through the initializer (init). This was a design choice made by LangChain to make sure that once a document loader has been instantiated it has all the information needed to load documents.
InstallationInstall langchain-core and langchain_community.
%pip install -qU langchain_core langchain_community
Implementation
Let's create an example of a standard document loader that loads a file and creates a document from each line in the file.
from typing import AsyncIterator, Iterator
from langchain_core.document_loaders import BaseLoader
from langchain_core.documents import Document
class CustomDocumentLoader(BaseLoader):
"""An example document loader that reads a file line by line."""
def __init__(self, file_path: str) -> None:
"""Initialize the loader with a file path.
Args:
file_path: The path to the file to load.
"""
self.file_path = file_path
def lazy_load(self) -> Iterator[Document]:
"""A lazy loader that reads a file line by line.
When you're implementing lazy load methods, you should use a generator
to yield documents one by one.
"""
with open(self.file_path, encoding="utf-8") as f:
line_number = 0
for line in f:
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": self.file_path},
)
line_number += 1
async def alazy_load(
self,
) -> AsyncIterator[Document]:
"""An async lazy loader that reads a file line by line."""
import aiofiles
async with aiofiles.open(self.file_path, encoding="utf-8") as f:
line_number = 0
async for line in f:
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": self.file_path},
)
line_number += 1
Test 🧪
To test out the document loader, we need a file with some quality content.
with open("./meow.txt", "w", encoding="utf-8") as f:
quality_content = "meow meow🐱 \n meow meow🐱 \n meow😻😻"
f.write(quality_content)
loader = CustomDocumentLoader("./meow.txt")
for doc in loader.lazy_load():
print()
print(type(doc))
print(doc)
<class 'langchain_core.documents.base.Document'>
page_content='meow meow🐱
' metadata={'line_number': 0, 'source': './meow.txt'}
<class 'langchain_core.documents.base.Document'>
page_content=' meow meow🐱
' metadata={'line_number': 1, 'source': './meow.txt'}
<class 'langchain_core.documents.base.Document'>
page_content=' meow😻😻' metadata={'line_number': 2, 'source': './meow.txt'}
async for doc in loader.alazy_load():
print()
print(type(doc))
print(doc)
<class 'langchain_core.documents.base.Document'>
page_content='meow meow🐱
' metadata={'line_number': 0, 'source': './meow.txt'}
<class 'langchain_core.documents.base.Document'>
page_content=' meow meow🐱
' metadata={'line_number': 1, 'source': './meow.txt'}
<class 'langchain_core.documents.base.Document'>
page_content=' meow😻😻' metadata={'line_number': 2, 'source': './meow.txt'}
tip
load()
can be helpful in an interactive environment such as a jupyter notebook.
Avoid using it for production code since eager loading assumes that all the content can fit into memory, which is not always the case, especially for enterprise data.
[Document(metadata={'line_number': 0, 'source': './meow.txt'}, page_content='meow meow🐱 \n'),
Document(metadata={'line_number': 1, 'source': './meow.txt'}, page_content=' meow meow🐱 \n'),
Document(metadata={'line_number': 2, 'source': './meow.txt'}, page_content=' meow😻😻')]
Working with Files
Many document loaders involve parsing files. The difference between such loaders usually stems from how the file is parsed, rather than how the file is loaded. For example, you can use open
to read the binary content of either a PDF or a markdown file, but you need different parsing logic to convert that binary data into text.
As a result, it can be helpful to decouple the parsing logic from the loading logic, which makes it easier to re-use a given parser regardless of how the data was loaded.
BaseBlobParserA BaseBlobParser
is an interface that accepts a blob
and outputs a list of Document
objects. A blob
is a representation of data that lives either in memory or in a file. LangChain python has a Blob
primitive which is inspired by the Blob WebAPI spec.
from langchain_core.document_loaders import BaseBlobParser, Blob
class MyParser(BaseBlobParser):
"""A simple parser that creates a document from each line."""
def lazy_parse(self, blob: Blob) -> Iterator[Document]:
"""Parse a blob into a document line by line."""
line_number = 0
with blob.as_bytes_io() as f:
for line in f:
line_number += 1
yield Document(
page_content=line,
metadata={"line_number": line_number, "source": blob.source},
)
blob = Blob.from_path("./meow.txt")
parser = MyParser()
list(parser.lazy_parse(blob))
[Document(metadata={'line_number': 1, 'source': './meow.txt'}, page_content='meow meow🐱 \n'),
Document(metadata={'line_number': 2, 'source': './meow.txt'}, page_content=' meow meow🐱 \n'),
Document(metadata={'line_number': 3, 'source': './meow.txt'}, page_content=' meow😻😻')]
Using the blob API also allows one to load content directly from memory without having to read it from a file!
blob = Blob(data=b"some data from memory\nmeow")
list(parser.lazy_parse(blob))
[Document(metadata={'line_number': 1, 'source': None}, page_content='some data from memory\n'),
Document(metadata={'line_number': 2, 'source': None}, page_content='meow')]
Blob
Let's take a quick look through some of the Blob API.
blob = Blob.from_path("./meow.txt", metadata={"foo": "bar"})
b'meow meow\xf0\x9f\x90\xb1 \n meow meow\xf0\x9f\x90\xb1 \n meow\xf0\x9f\x98\xbb\xf0\x9f\x98\xbb'
'meow meow🐱 \n meow meow🐱 \n meow😻😻'
<contextlib._GeneratorContextManager at 0x74b8d42e9940>
Blob Loaders
While a parser encapsulates the logic needed to parse binary data into documents, blob loaders encapsulate the logic that's necessary to load blobs from a given storage location.
At the moment, LangChain
supports FileSystemBlobLoader
and CloudBlobLoader
.
You can use the FileSystemBlobLoader
to load blobs and then use the parser to parse them.
from langchain_community.document_loaders.blob_loaders import FileSystemBlobLoader
filesystem_blob_loader = FileSystemBlobLoader(
path=".", glob="*.mdx", show_progress=True
)
parser = MyParser()
for blob in filesystem_blob_loader.yield_blobs():
for doc in parser.lazy_parse(blob):
print(doc)
break
Or, you can use CloudBlobLoader
to load blobs from a cloud storage location (Supports s3://, az://, gs://, file:// schemes).
%pip install -q 'cloudpathlib[s3]'
from cloudpathlib import S3Client, S3Path
from langchain_community.document_loaders.blob_loaders import CloudBlobLoader
client = S3Client(no_sign_request=True)
client.set_as_default_client()
path = S3Path(
"s3://bucket-01", client=client
)
cloud_loader = CloudBlobLoader(path, glob="**/*.pdf", show_progress=True)
for blob in cloud_loader.yield_blobs():
print(blob)
Generic Loader
LangChain has a GenericLoader
abstraction which composes a BlobLoader
with a BaseBlobParser
.
GenericLoader
is meant to provide standardized classmethods that make it easy to use existing BlobLoader
implementations. At the moment, the FileSystemBlobLoader
and CloudBlobLoader
are supported. See example below:
from langchain_community.document_loaders.generic import GenericLoader
generic_loader_filesystem = GenericLoader(
blob_loader=filesystem_blob_loader, blob_parser=parser
)
for idx, doc in enumerate(generic_loader_filesystem.lazy_load()):
if idx < 5:
print(doc)
print("... output truncated for demo purposes")
100%|██████████| 7/7 [00:00<00:00, 1224.82it/s]
``````output
page_content='# Text embedding models
' metadata={'line_number': 1, 'source': 'embed_text.mdx'}
page_content='
' metadata={'line_number': 2, 'source': 'embed_text.mdx'}
page_content=':::info
' metadata={'line_number': 3, 'source': 'embed_text.mdx'}
page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.
' metadata={'line_number': 4, 'source': 'embed_text.mdx'}
page_content=':::
' metadata={'line_number': 5, 'source': 'embed_text.mdx'}
... output truncated for demo purposes
Custom Generic Loader
If you really like creating classes, you can sub-class and create a class to encapsulate the logic together.
You can sub-class from this class to load content using an existing loader.
from typing import Any
class MyCustomLoader(GenericLoader):
@staticmethod
def get_parser(**kwargs: Any) -> BaseBlobParser:
"""Override this method to associate a default parser with the class."""
return MyParser()
loader = MyCustomLoader.from_filesystem(path=".", glob="*.mdx", show_progress=True)
for idx, doc in enumerate(loader.lazy_load()):
if idx < 5:
print(doc)
print("... output truncated for demo purposes")
100%|██████████| 7/7 [00:00<00:00, 814.86it/s]
``````output
page_content='# Text embedding models
' metadata={'line_number': 1, 'source': 'embed_text.mdx'}
page_content='
' metadata={'line_number': 2, 'source': 'embed_text.mdx'}
page_content=':::info
' metadata={'line_number': 3, 'source': 'embed_text.mdx'}
page_content='Head to [Integrations](/docs/integrations/text_embedding/) for documentation on built-in integrations with text embedding model providers.
' metadata={'line_number': 4, 'source': 'embed_text.mdx'}
page_content=':::
' metadata={'line_number': 5, 'source': 'embed_text.mdx'}
... output truncated for demo purposes
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4