Plot Posterior densities in the style of John K. Kruschke’s book.
Any object that can be converted to an arviz.InferenceData
object. Refer to the documentation of arviz.convert_to_dataset()
for details
Variables to be plotted, two variables are required. Prefix the variables with ~
when you want to exclude them from the plot.
If None
(default), interpret var_names as the real variables names. If “like”, interpret var_names as substrings of the real variables names. If “regex”, interpret var_names as regular expressions on the real variables names. A la pandas.filter
.
set_like
of str
, optional
List of dimensions to reduce. Defaults to reducing only the “chain” and “draw” dimensions. See the this section for usage examples.
Function to transform data (defaults to None i.e.the identity function)
Coordinates of var_names to be plotted. Passed to xarray.Dataset.sel()
tuple
Number of rows and columns. Defaults to None, the rows and columns are automatically inferred.
Figure size. If None it will be defined automatically.
Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize
.
Plots highest density interval for chosen percentage of density. Use ‘hide’ to hide the highest density interval. Defaults to 0.94.
If true (default) it may compute more than one credible interval if the distribution is multimodal and the modes are well separated.
If true ignores nan values when computing the hdi and point estimates. Defaults to false.
Controls formatting of floats. Defaults to 2 or the integer part, whichever is bigger.
Plot point estimate per variable. Values should be ‘mean’, ‘median’, ‘mode’ or None. Defaults to ‘auto’ i.e. it falls back to default set in rcParams.
Specifies which InferenceData group should be plotted. Defaults to ‘posterior’.
list
, tuple
or dictionary
of {str: tuples
or lists
}, optional
A dictionary of tuples with the lower and upper values of the Region Of Practical Equivalence. See this section for usage examples.
display the percentage below and above the values in ref_val. Must be None (default), a constant, a list or a dictionary like see an example below. If a list is provided, its length should match the number of variables.
Specifies the color of ROPE and displayed percentage within ROPE
Specifies the color of the displayed percentage
Type of plot to display (kde or hist) For discrete variables this argument is ignored and a histogram is always used. Defaults to rcParam plot.density_kind
If numeric, indicates the bandwidth and must be positive. If str, indicates the method to estimate the bandwidth and must be one of “scott”, “silverman”, “isj” or “experimental” when circular
is False and “taylor” (for now) when circular
is True. Defaults to “default” which means “experimental” when variable is not circular and “taylor” when it is. Only works if kind == kde
.
If True, it interprets the values passed are from a circular variable measured in radians and a circular KDE is used. Only valid for 1D KDE. Defaults to False. Only works if kind == kde
.
Controls the number of bins,accepts the same keywords matplotlib.pyplot.hist()
does. Only works if kind == hist
. If None (default) it will use auto
for continuous variables and range(xmin, xmax + 1)
for discrete variables.
labeller
instance
, optional
Class providing the method make_label_vert
to generate the labels in the plot titles. Read the Label guide for more details and usage examples.
A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it).
Select plotting backend {“matplotlib”,”bokeh”}. Default “matplotlib”.
These are kwargs specific to the backend being used, passed to matplotlib.pyplot.subplots()
or bokeh.plotting.figure()
Call backend show function.
Passed as-is to matplotlib.pyplot.hist()
or matplotlib.pyplot.plot()
function depending on the value of kind
.
matplotlib
axes
or bokeh
figures
See also
plot_dist
Plot distribution as histogram or kernel density estimates.
plot_density
Generate KDE plots for continuous variables and histograms for discrete ones.
plot_forest
Forest plot to compare HDI intervals from a number of distributions.
Examples
Show a default kernel density plot following style of John Kruschke
>>> import arviz as az >>> data = az.load_arviz_data('centered_eight') >>> az.plot_posterior(data)
Plot subset variables by specifying variable name exactly
>>> az.plot_posterior(data, var_names=['mu'])
Plot Region of Practical Equivalence (rope) and select variables with regular expressions
>>> az.plot_posterior(data, var_names=['mu', '^the'], filter_vars="regex", rope=(-1, 1))
Plot Region of Practical Equivalence for selected distributions
>>> rope = {'mu': [{'rope': (-2, 2)}], 'theta': [{'school': 'Choate', 'rope': (2, 4)}]} >>> az.plot_posterior(data, var_names=['mu', 'theta'], rope=rope)
Using coords
argument to plot only a subset of data
>>> coords = {"school": ["Choate","Phillips Exeter"]} >>> az.plot_posterior(data, var_names=["mu", "theta"], coords=coords)
Add reference lines
>>> az.plot_posterior(data, var_names=['mu', 'theta'], ref_val=0)
Show point estimate of distribution
>>> az.plot_posterior(data, var_names=['mu', 'theta'], point_estimate='mode')
Show reference values using variable names and coordinates
>>> az.plot_posterior(data, ref_val= {"theta": [{"school": "Deerfield", "ref_val": 4}, ... {"school": "Choate", "ref_val": 3}]})
Show reference values using a list
>>> az.plot_posterior(data, ref_val=[1] + [5] * 8 + [1])
Plot posterior as a histogram
>>> az.plot_posterior(data, var_names=['mu'], kind='hist')
Change size of highest density interval
>>> az.plot_posterior(data, var_names=['mu'], hdi_prob=.75)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4