Perform an xarray stacking on all groups.
Stack any number of existing dimensions into a single new dimension. Loops groups to perform Dataset.stack(key=value) for every kwarg if value is a dimension of the dataset. The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.stack()
dict
, optional
Names of new dimensions, and the existing dimensions that they replace.
Groups where the selection is to be applied. Can either be group names or metagroup names.
None
, “like”, “regex”}, optional
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
dict
, optional
It must be accepted by xarray.Dataset.stack()
.
InferenceData
A new InferenceData object by default. When inplace==True
perform selection in-place and return None
See also
xarray.Dataset.stack
Stack any number of existing dimensions into a single new dimension.
unstack
Perform an xarray unstacking on all groups of InferenceData object.
Examples
Use stack
to stack any number of existing dimensions into a single new dimension. We first check the original object:
import arviz as az idata = az.load_arviz_data("rugby") idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) float64 960kB ... away_points (chain, draw, match) float64 960kB ... Attributes: created_at: 2024-03-06T20:46:24.120642 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
In order to stack two dimensions chain
and draw
to sample
, we can use:
idata.stack(sample=["chain", "draw"], inplace=True) idata
<xarray.Dataset> Size: 496kB Dimensions: (sample: 2000, team: 6) Coordinates: * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 Data variables: home (sample) float64 16kB 0.1341 0.2025 0.2146 ... 0.1988 0.1177 intercept (sample) float64 16kB 2.949 2.907 2.888 ... 2.908 2.876 2.954 atts_star (team, sample) float64 96kB 0.3346 0.1301 ... 0.4086 0.3763 defs_star (team, sample) float64 96kB -0.4319 -0.1368 ... 0.001797 -0.4827 sd_att (sample) float64 16kB 0.3047 0.1598 0.1965 ... 0.4021 0.2962 sd_def (sample) float64 16kB 0.5739 0.4876 0.3242 ... 0.3384 0.3576 atts (team, sample) float64 96kB 0.1833 0.1542 ... 0.2989 0.3514 defs (team, sample) float64 96kB -0.09829 -0.1253 ... -0.1787 -0.2903 Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
home
(sample)
float64
0.1341 0.2025 ... 0.1988 0.1177
array([0.13408519, 0.20247262, 0.21455892, ..., 0.17932739, 0.19881358, 0.11767652], shape=(2000,))
intercept
(sample)
float64
2.949 2.907 2.888 ... 2.876 2.954
array([2.94887444, 2.90651711, 2.88779969, ..., 2.90827051, 2.87575421, 2.95354855], shape=(2000,))
atts_star
(team, sample)
float64
0.3346 0.1301 ... 0.4086 0.3763
array([[ 0.3345804 , 0.13010732, 0.12930559, ..., 0.01957786, 0.34528579, 0.23011713], [ 0.09127336, -0.12252053, -0.11542605, ..., -0.29095022, 0.00514874, -0.08794849], [ 0.2622012 , 0.09345455, 0.04391594, ..., -0.15567664, 0.22387013, 0.14092251], [ 0.01167204, -0.12397064, -0.1501342 , ..., -0.32603692, -0.03426023, -0.19817556], [-0.16773523, -0.29440377, -0.40474183, ..., -0.48014026, -0.29042113, -0.31154567], [ 0.3755542 , 0.17266724, 0.24817313, ..., 0.10377521, 0.40856436, 0.37630503]], shape=(6, 2000))
defs_star
(team, sample)
float64
-0.4319 -0.1368 ... -0.4827
array([[-0.43185756, -0.13675304, -0.24804094, ..., -0.18692347, 0.00435018, -0.31681846], [-0.40137989, -0.08412848, -0.12189797, ..., -0.05624302, 0.11161378, -0.24646802], [-0.68291185, -0.32905182, -0.57025033, ..., -0.49108944, -0.29887096, -0.59106925], [-0.17161927, 0.17807832, 0.07661587, ..., -0.0213034 , 0.46960521, 0.06063741], [ 0.2225435 , 0.5470153 , 0.42543691, ..., 0.39009367, 0.79437464, 0.42188139], [-0.53615971, -0.2438379 , -0.26712113, ..., -0.29332771, 0.00179694, -0.48268733]], shape=(6, 2000))
sd_att
(sample)
float64
0.3047 0.1598 ... 0.4021 0.2962
array([0.30465845, 0.1597652 , 0.19652797, ..., 0.30586222, 0.40206892, 0.29615459], shape=(2000,))
sd_def
(sample)
float64
0.5739 0.4876 ... 0.3384 0.3576
array([0.5738763 , 0.4876292 , 0.32421015, ..., 0.53621936, 0.33842797, 0.3576052 ], shape=(2000,))
atts
(team, sample)
float64
0.1833 0.1542 ... 0.2989 0.3514
array([[ 0.18332274, 0.15421829, 0.17079016, ..., 0.20781969, 0.23558785, 0.2051713 ], [-0.0599843 , -0.09840956, -0.07394147, ..., -0.1027084 , -0.10454921, -0.11289431], [ 0.11094354, 0.11756552, 0.08540051, ..., 0.03256518, 0.11417219, 0.11597669], [-0.13958562, -0.09985967, -0.10864963, ..., -0.13779509, -0.14395817, -0.22312138], [-0.31899289, -0.2702928 , -0.36325726, ..., -0.29189843, -0.40011907, -0.3364915 ], [ 0.22429654, 0.19677821, 0.2896577 , ..., 0.29201704, 0.29886641, 0.3513592 ]], shape=(6, 2000))
defs
(team, sample)
float64
-0.09829 -0.1253 ... -0.2903
array([[-0.09829343, -0.12530677, -0.130498 , ..., -0.07712457, -0.17612812, -0.12439775], [-0.06781576, -0.07268221, -0.00435504, ..., 0.05355588, -0.06886452, -0.05404731], [-0.34934772, -0.31760555, -0.4527074 , ..., -0.38129055, -0.47934926, -0.39864854], [ 0.16194486, 0.18952459, 0.1941588 , ..., 0.08849549, 0.28912691, 0.25305812], [ 0.55610763, 0.55846157, 0.54297984, ..., 0.49989256, 0.61389635, 0.6143021 ], [-0.20259558, -0.23239163, -0.1495782 , ..., -0.18352882, -0.17868136, -0.29026662]], shape=(6, 2000))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
<xarray.Dataset> Size: 2MB Dimensions: (match: 60, sample: 2000) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: home_points (match, sample) int64 960kB 48 49 51 24 46 ... 18 23 19 22 12 away_points (match, sample) int64 960kB 12 12 8 12 6 10 ... 23 14 12 9 15 Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
home_points
(match, sample)
int64
48 49 51 24 46 ... 18 23 19 22 12
array([[48, 49, 51, ..., 51, 46, 48], [22, 19, 17, ..., 18, 12, 11], [23, 35, 25, ..., 27, 24, 23], ..., [32, 32, 30, ..., 32, 32, 33], [ 8, 14, 16, ..., 25, 16, 18], [21, 19, 16, ..., 19, 22, 12]], shape=(60, 2000))
away_points
(match, sample)
int64
12 12 8 12 6 10 ... 23 14 12 9 15
array([[12, 12, 8, ..., 13, 8, 15], [24, 22, 24, ..., 27, 18, 21], [10, 11, 7, ..., 13, 12, 13], ..., [14, 17, 12, ..., 17, 14, 15], [20, 12, 23, ..., 25, 19, 28], [17, 18, 11, ..., 12, 9, 15]], shape=(60, 2000))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
<xarray.Dataset> Size: 2MB Dimensions: (match: 60, sample: 2000) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: home_points (match, sample) float64 960kB -9.405 -9.389 ... -3.71 -3.011 away_points (match, sample) float64 960kB -2.499 -2.552 ... -3.354 -4.934 Attributes: created_at: 2024-03-06T20:46:24.120642 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
home_points
(match, sample)
float64
-9.405 -9.389 ... -3.71 -3.011
array([[ -9.40503813, -9.38868719, -9.26371557, ..., -8.80657574, -11.95856088, -11.06567206], [ -4.71505119, -5.11864814, -4.20549105, ..., -4.89336187, -4.98973966, -6.30407661], [ -2.59590512, -2.68932022, -2.62319735, ..., -2.79317224, -2.90002593, -2.75753056], ..., [ -2.87036205, -3.22804065, -3.04604495, ..., -2.70667107, -3.08894235, -2.74088467], [ -2.47027792, -2.53861155, -2.5136005 , ..., -2.49613349, -2.80229105, -2.669195 ], [ -3.57686697, -3.59668828, -3.92306146, ..., -3.22820606, -3.70999097, -3.01053645]], shape=(60, 2000))
away_points
(match, sample)
float64
-2.499 -2.552 ... -3.354 -4.934
array([[ -2.49890805, -2.55173379, -2.94632712, ..., -2.48069196, -3.37593267, -2.60277523], [ -2.57334919, -2.75994094, -2.51173119, ..., -2.58214111, -2.57267635, -2.57661935], [ -3.52372672, -3.694786 , -2.86203961, ..., -3.14874369, -2.57554921, -2.88481789], ..., [-16.31078274, -16.87357685, -15.1606194 , ..., -14.95233646, -15.87526202, -17.63904961], [ -2.65778678, -2.45749429, -2.62417213, ..., -3.14087568, -2.5879505 , -2.81325429], [ -4.22853381, -3.94161543, -3.53167773, ..., -4.1908865 , -3.35392222, -4.93375258]], shape=(60, 2000))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
<xarray.Dataset> Size: 304kB Dimensions: (sample: 2000, team: 6) Coordinates: * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 Data variables: home (sample) float64 16kB -0.9279 -0.9394 -0.942 ... -0.9387 -0.9259 sd_att (sample) float64 16kB -0.9305 -0.9221 -0.9238 ... -0.9391 -0.9299 sd_def (sample) float64 16kB -0.9601 -0.9487 -0.9321 ... -0.9333 -0.9349 intercept (sample) float64 16kB -0.9202 -0.9233 -0.9252 ... -0.9267 -0.92 atts_star (team, sample) float64 96kB -0.3334 0.5835 ... -0.5241 -0.5093 defs_star (team, sample) float64 96kB -0.6467 -0.2401 ... 0.1645 -0.8016 Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
home
(sample)
float64
-0.9279 -0.9394 ... -0.9387 -0.9259
array([-0.92792795, -0.93943611, -0.9419563 , ..., -0.93501769, -0.93870195, -0.92586241], shape=(2000,))
sd_att
(sample)
float64
-0.9305 -0.9221 ... -0.9391 -0.9299
array([-0.93054063, -0.92212915, -0.92376644, ..., -0.9306325 , -0.93914596, -0.92990198], shape=(2000,))
sd_def
(sample)
float64
-0.9601 -0.9487 ... -0.9333 -0.9349
array([-0.96010529, -0.94866131, -0.93207756, ..., -0.95487994, -0.93325522, -0.93492372], shape=(2000,))
intercept
(sample)
float64
-0.9202 -0.9233 ... -0.9267 -0.92
array([-0.92024544, -0.92330806, -0.92523299, ..., -0.92314568, -0.92665704, -0.9200174 ], shape=(2000,))
atts_star
(team, sample)
float64
-0.3334 0.5835 ... -0.5241 -0.5093
array([[-0.33341238, 0.58351564, 0.49156286, ..., 0.26363345, -0.376552 , -0.00394248], [ 0.22474762, 0.62106005, 0.53553591, ..., -0.1867525 , -0.00788875, 0.2538401 ], [-0.10072504, 0.74402865, 0.68304505, ..., 0.13615353, -0.16281733, 0.1847228 ], [ 0.26889153, 0.61405828, 0.41621517, ..., -0.30245344, -0.01143712, 0.0740459 ], [ 0.11806281, -0.78271132, -1.41267939, ..., -0.96644247, -0.26867753, -0.25538502], [-0.49015622, 0.33109445, -0.08930457, ..., 0.20812402, -0.5240923 , -0.50932423]], shape=(6, 2000))
defs_star
(team, sample)
float64
-0.6467 -0.2401 ... 0.1645 -0.8016
array([[-0.64674576, -0.24006315, -0.08523527, ..., -0.35648588, 0.16442285, -0.28306192], [-0.60819047, -0.21562106, 0.13674269, ..., -0.30122734, 0.11012122, -0.12812372], [-1.07164516, -0.42841555, -1.33942406, ..., -0.71510514, -0.22544095, -1.25657627], [-0.40831339, -0.26742116, 0.17950234, ..., -0.29651578, -0.79822191, 0.09501097], [-0.43878767, -0.82993973, -0.65354339, ..., -0.56034668, -2.59028298, -0.58650684], [-0.80003434, -0.32576243, -0.13199193, ..., -0.44534713, 0.16449137, -0.80156201]], shape=(6, 2000))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
<xarray.Dataset> Size: 292kB Dimensions: (sample: 2000) Coordinates: * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (sample) float64 16kB -0.5529 0.4738 ... -1.006 index_in_trajectory (sample) int64 16kB -5 -15 -4 -11 ... 17 24 -28 -20 smallest_eigval (sample) float64 16kB nan nan nan nan ... nan nan nan perf_counter_start (sample) float64 16kB 9.249e+03 ... 9.251e+03 largest_eigval (sample) float64 16kB nan nan nan nan ... nan nan nan step_size (sample) float64 16kB 0.3105 0.3105 ... 0.2495 0.2495 ... ... reached_max_treedepth (sample) bool 2kB False False False ... False False perf_counter_diff (sample) float64 16kB 0.005344 0.005213 ... 0.006747 tree_depth (sample) int64 16kB 5 5 5 5 3 3 4 4 ... 5 5 3 6 6 5 5 process_time_diff (sample) float64 16kB 0.005344 0.005214 ... 0.006749 step_size_bar (sample) float64 16kB 0.2456 0.2456 ... 0.2186 0.2186 energy (sample) float64 16kB 539.7 539.7 ... 542.7 547.7 Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
max_energy_error
(sample)
float64
-0.5529 0.4738 ... -1.753 -1.006
array([-0.55287234, 0.4737601 , 0.38146515, ..., -1.2172522 , -1.75266286, -1.00632993], shape=(2000,))
index_in_trajectory
(sample)
int64
-5 -15 -4 -11 -1 ... 17 24 -28 -20
array([ -5, -15, -4, ..., 24, -28, -20], shape=(2000,))
smallest_eigval
(sample)
float64
nan nan nan nan ... nan nan nan nan
array([nan, nan, nan, ..., nan, nan, nan], shape=(2000,))
perf_counter_start
(sample)
float64
9.249e+03 9.249e+03 ... 9.251e+03
array([9248.82754331, 9248.8330349 , 9248.8383987 , ..., 9251.30902326, 9251.31643629, 9251.32183691], shape=(2000,))
largest_eigval
(sample)
float64
nan nan nan nan ... nan nan nan nan
array([nan, nan, nan, ..., nan, nan, nan], shape=(2000,))
step_size
(sample)
float64
0.3105 0.3105 ... 0.2495 0.2495
array([0.3104718, 0.3104718, 0.3104718, ..., 0.2495061, 0.2495061, 0.2495061], shape=(2000,))
n_steps
(sample)
float64
31.0 31.0 31.0 ... 39.0 31.0 31.0
array([31., 31., 31., ..., 39., 31., 31.], shape=(2000,))
lp
(sample)
float64
-532.0 -530.8 ... -537.5 -540.5
array([-531.98811454, -530.75687589, -530.48713886, ..., -538.81650266, -537.50354916, -540.4738906 ], shape=(2000,))
diverging
(sample)
bool
False False False ... False False
array([False, False, False, ..., False, False, False], shape=(2000,))
energy_error
(sample)
float64
-0.4496 0.1285 ... -0.526 0.5242
array([-0.449581 , 0.12848133, -0.01048991, ..., 0.48898993, -0.52595367, 0.52422027], shape=(2000,))
acceptance_rate
(sample)
float64
0.9401 0.8446 0.8817 ... 1.0 0.8905
array([0.94014478, 0.84460776, 0.88171987, ..., 0.85377188, 1. , 0.89048311], shape=(2000,))
reached_max_treedepth
(sample)
bool
False False False ... False False
array([False, False, False, ..., False, False, False], shape=(2000,))
perf_counter_diff
(sample)
float64
0.005344 0.005213 ... 0.006747
array([0.0053438 , 0.00521331, 0.0053572 , ..., 0.00716263, 0.00526279, 0.0067473 ], shape=(2000,))
tree_depth
(sample)
int64
5 5 5 5 3 3 4 4 ... 4 5 5 3 6 6 5 5
array([5, 5, 5, ..., 6, 5, 5], shape=(2000,))
process_time_diff
(sample)
float64
0.005344 0.005214 ... 0.006749
array([0.00534419, 0.00521375, 0.00535746, ..., 0.0071642 , 0.00526292, 0.00674856], shape=(2000,))
step_size_bar
(sample)
float64
0.2456 0.2456 ... 0.2186 0.2186
array([0.24556179, 0.24556179, 0.24556179, ..., 0.21861927, 0.21861927, 0.21861927], shape=(2000,))
energy
(sample)
float64
539.7 539.7 537.4 ... 542.7 547.7
array([539.72702595, 539.67305986, 537.35156684, ..., 546.40260103, 542.69269775, 547.74167364], shape=(2000,))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
<xarray.Dataset> Size: 124kB Dimensions: (team: 6, sample: 500) Coordinates: * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' * sample (sample) object 4kB MultiIndex * chain (sample) int64 4kB 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 * draw (sample) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 Data variables: atts_star (team, sample) float64 24kB -0.1165 -0.6705 ... 0.9718 0.645 sd_att (sample) float64 4kB 2.205 1.604 0.6585 ... 1.116 0.9112 1.459 atts (team, sample) float64 24kB -0.4148 -0.2689 ... 1.039 0.416 sd_def (sample) float64 4kB 0.01573 0.382 0.9764 ... 0.1869 2.879 1.323 defs (team, sample) float64 24kB -0.003092 0.2726 ... -1.412 -0.3131 intercept (sample) float64 4kB 1.172 3.866 2.439 4.324 ... 2.066 1.964 3.91 home (sample) float64 4kB 0.694 -0.6541 0.4198 ... -2.354 -0.9812 defs_star (team, sample) float64 24kB 0.003231 0.4705 ... -0.7006 0.001565 Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
sample
(sample)
object
MultiIndex
[500 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
[500 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[500 values with dtype=int64]
atts_star
(team, sample)
float64
-0.1165 -0.6705 ... 0.9718 0.645
array([[-0.11653548, -0.67045656, -0.69838033, ..., 0.01926211, -1.04638222, -0.432023 ], [-0.76068888, 0.19873746, 0.23689877, ..., 0.03066497, 0.5622779 , 1.73440419], [ 0.24774959, -1.4341374 , 1.10654263, ..., -0.69453399, -0.70100014, -3.22005559], [-1.66298142, 0.54366992, -0.26176343, ..., 1.0090901 , 0.96508044, 3.61988443], [ 4.17058201, -0.4159945 , 0.22528761, ..., -1.10046047, -1.1534373 , -0.97328489], [-0.08826983, -0.63106866, 0.52063122, ..., 1.27402601, 0.97180245, 0.64502926]], shape=(6, 500))
sd_att
(sample)
float64
2.205 1.604 0.6585 ... 0.9112 1.459
array([2.20546369, 1.60356457, 0.65849302, 0.0572312 , 0.31562311, 2.26282831, 0.16691152, 0.59561427, 1.27063721, 1.36173294, 1.96728062, 2.48435848, 0.88213806, 0.64150973, 1.97634058, 1.18809564, 1.37980832, 1.37502331, 2.01922557, 0.04711769, 2.09144993, 0.79470926, 0.6518245 , 2.31796931, 1.1311066 , 3.38204267, 2.60532898, 1.73966191, 1.05773776, 1.79633861, 2.82483306, 1.88425952, 1.51161539, 1.25111982, 2.57643833, 0.39642103, 2.27222944, 2.02843926, 0.01697714, 0.38724908, 0.19646502, 3.31025551, 1.32227486, 0.06342172, 0.68195723, 2.59481402, 1.14534856, 1.42103334, 1.58416535, 0.62023766, 4.27340613, 0.01080926, 0.1869434 , 1.34827065, 1.68025234, 0.48731921, 0.05645705, 0.38348926, 0.73786512, 0.33361236, 0.89157656, 0.61572163, 0.90265029, 2.17805297, 1.96418068, 1.80418375, 2.06542649, 2.74408555, 2.30604495, 0.99874451, 1.10860294, 0.65997802, 0.46789191, 1.4907774 , 0.69865055, 1.64931174, 1.13522103, 0.69872638, 3.15239885, 2.17428307, 0.98864123, 0.7919606 , 1.64172499, 1.39168035, 0.4406471 , 2.01378242, 1.46100487, 0.45620004, 1.61901097, 1.43168856, 3.51815737, 0.79241495, 1.59222371, 1.92017755, 0.28487036, 3.3542204 , 0.2742325 , 0.38380064, 0.74659078, 1.74439873, ... 0.42997698, 0.29974895, 1.01655278, 4.38376933, 0.47918725, 1.98058231, 2.80093895, 1.93744658, 0.33026733, 5.93450881, 0.43642943, 4.73054438, 1.38211583, 0.134152 , 4.17213099, 1.33774156, 0.15394826, 0.50698738, 1.67131623, 2.44791313, 1.13146976, 3.03209901, 2.74220591, 1.66715335, 5.89795968, 1.90863078, 3.87343392, 0.99125713, 0.33856582, 1.82532308, 0.054058 , 0.76050408, 2.86417297, 1.65501302, 0.08617345, 1.07481481, 2.07591116, 0.89744735, 1.23646241, 1.18956069, 2.0922847 , 1.87442119, 4.24634847, 3.25426128, 1.07550273, 2.35581194, 0.59844341, 1.30532998, 0.10177707, 0.49751535, 0.45363006, 0.65138958, 2.32742978, 3.02956503, 0.33095512, 5.60594318, 1.33880515, 1.47036376, 3.43754041, 0.32298398, 2.14978813, 1.84183784, 4.00594407, 1.19448317, 0.3440357 , 1.87511377, 1.56146392, 3.28352556, 0.57680717, 2.03868559, 2.66557225, 0.34487155, 0.10340286, 0.08913829, 1.82973108, 3.89887752, 4.07364688, 0.64811234, 0.05448153, 3.11940557, 0.61162175, 1.19922869, 1.21078004, 2.74243713, 0.01152906, 2.98603299, 0.4232183 , 1.36790322, 0.96100312, 2.75124642, 0.85042284, 0.77142185, 0.68109404, 0.06673708, 2.02325021, 0.44299416, 1.45761132, 1.11578256, 0.91120065, 1.4589616 ])
atts
(team, sample)
float64
-0.4148 -0.2689 ... 1.039 0.416
array([[-0.41484481, -0.26891493, -0.88658307, ..., -0.07041268, -0.97943907, -0.6610154 ], [-1.05899821, 0.60027908, 0.04869603, ..., -0.05900982, 0.62922104, 1.50541179], [-0.05055974, -1.03259578, 0.91833988, ..., -0.78420878, -0.63405699, -3.44904799], [-1.96129075, 0.94521155, -0.44996617, ..., 0.91941531, 1.03202359, 3.39089203], [ 3.87227268, -0.01445287, 0.03708486, ..., -1.19013526, -1.08649416, -1.20227729], [-0.38657916, -0.22952704, 0.33242847, ..., 1.18435122, 1.03874559, 0.41603686]], shape=(6, 500))
sd_def
(sample)
float64
0.01573 0.382 ... 2.879 1.323
array([1.57348085e-02, 3.81997203e-01, 9.76383097e-01, 4.60942144e+00, 2.79569278e+00, 1.75326632e+00, 6.50343175e-01, 2.89158499e+00, 2.18850160e+00, 9.65101971e-01, 2.49489685e+00, 1.63997925e+00, 2.62898959e+00, 3.33873613e+00, 1.40057308e+00, 1.91628264e+00, 4.05482468e-01, 1.17886411e+00, 2.85407142e+00, 1.90900872e+00, 1.86277626e-01, 3.14296879e+00, 1.22517761e+00, 3.43702280e+00, 1.64589157e+00, 3.53518192e+00, 1.40607878e+00, 1.68964973e-01, 1.30358743e-01, 3.44785953e+00, 1.89644001e+00, 1.93499325e+00, 1.36188421e+00, 1.65347386e+00, 2.89700613e+00, 2.01737625e+00, 1.37689799e+00, 3.86982613e-01, 2.19291523e+00, 3.17336490e+00, 5.10456145e+00, 3.23097690e+00, 5.06213366e-01, 2.53480536e-01, 9.26457022e-03, 1.70901471e+00, 1.75571911e+00, 9.39935556e-01, 2.07468195e+00, 1.09072030e+00, 2.97344555e+00, 4.29991964e-01, 1.95489050e+00, 2.78219175e+00, 2.74405452e-01, 3.94751510e+00, 3.49702605e-01, 2.80149241e+00, 5.43392842e-01, 1.27320783e+00, 4.52254364e-01, 2.03350955e+00, 2.20467680e+00, 1.03339478e+00, 6.94941153e-01, 3.54741328e-01, 2.99056844e+00, 5.89917836e-01, 3.11178691e+00, 1.86840652e+00, 4.56989766e+00, 3.39645937e-01, 3.66898419e+00, 1.07726208e-02, 5.22600556e+00, 3.16291225e-01, 1.03520431e+00, 2.89403917e-01, 2.90981246e+00, 1.86456705e+00, ... 1.20745716e+00, 1.28860539e+00, 2.85134827e+00, 2.85081988e+00, 1.91155657e+00, 4.55069455e-01, 6.25568028e-01, 4.49823836e+00, 1.31886661e+00, 1.63037087e+00, 6.64870658e-01, 5.12792031e-01, 2.57986290e+00, 2.70458814e+00, 3.50820414e-01, 6.22133865e-01, 7.61563556e-01, 1.61008884e+00, 1.05840101e+00, 2.04425085e+00, 3.21516366e-01, 6.56046830e-01, 8.16602448e-01, 3.09966769e-01, 3.47824395e-01, 3.09388949e+00, 3.14361229e+00, 4.85909061e+00, 1.46250101e+00, 3.38704445e+00, 1.98801950e+00, 1.18002011e+00, 3.08572727e+00, 1.44519852e-01, 9.87473814e-01, 8.88357425e-01, 1.03633193e+00, 2.64019204e+00, 1.70160752e+00, 2.59975123e+00, 1.14804571e-01, 3.41268935e+00, 1.15265234e+00, 7.39729312e-01, 1.42336752e+00, 2.84817590e+00, 2.51501115e+00, 3.82833334e-01, 1.34166825e+00, 8.66819847e-01, 2.57091346e+00, 2.61077232e+00, 7.85519913e-01, 2.70379184e+00, 2.20450420e+00, 1.89147421e+00, 1.02292882e+00, 3.57110744e+00, 1.15229707e+00, 1.19925144e+00, 8.27636321e-01, 4.46489327e-01, 4.98563900e-02, 1.07652379e+00, 2.46771725e-01, 2.69058611e+00, 3.40088155e+00, 4.45012094e+00, 1.57161448e+00, 9.64447987e-01, 8.14071375e-01, 9.48421314e-01, 3.03122983e+00, 5.69390156e-01, 2.28679780e-01, 7.48853728e-01, 2.69022286e+00, 1.86937729e-01, 2.87869004e+00, 1.32278217e+00])
defs
(team, sample)
float64
-0.003092 0.2726 ... -1.412 -0.3131
array([[-3.09179024e-03, 2.72570341e-01, -2.18760328e-01, ..., 4.38152371e-02, -1.03437229e+00, -3.97338166e+00], [ 2.01365891e-03, -4.15791536e-01, -3.67484861e-01, ..., -2.10827978e-02, 2.62486870e+00, 1.06416996e+00], [ 4.35137550e-03, -6.81952437e-02, -2.95711882e-01, ..., -1.08161510e-01, -1.89319247e+00, 1.50133973e+00], [ 1.19550750e-02, 2.54996511e-01, -1.61932686e+00, ..., 2.05526307e-01, 5.17614166e-01, 2.06652009e+00], [-5.18010208e-03, 2.34591026e-01, 3.32208460e-01, ..., -2.00045397e-01, 1.19748838e+00, -3.45545983e-01], [-1.00482171e-02, -2.78171099e-01, 2.16907547e+00, ..., 7.99481607e-02, -1.41240648e+00, -3.13102125e-01]], shape=(6, 500))
intercept
(sample)
float64
1.172 3.866 2.439 ... 1.964 3.91
array([1.17171239, 3.86583539, 2.4391407 , 4.32375204, 4.1286731 , 3.74389792, 2.32573896, 2.98106485, 4.22407409, 2.9102616 , 2.81718585, 1.68395292, 2.53203057, 4.06034408, 3.98738926, 2.85474106, 5.80544728, 4.22797526, 2.01281423, 3.11958143, 2.02967296, 1.42041195, 1.52309998, 2.14085323, 2.80980621, 4.20356678, 4.36770697, 2.7701203 , 2.39197921, 4.72827613, 0.40895562, 0.68277932, 3.58754184, 3.01605691, 1.85861561, 2.46897923, 3.07434029, 4.79042202, 2.55829205, 3.08326682, 2.64343737, 2.93699907, 2.50526724, 2.10879168, 3.4822721 , 4.11493029, 3.45049648, 3.81184193, 1.48230072, 2.7676012 , 3.26422772, 6.2515801 , 2.97717842, 2.90682505, 0.61380645, 2.85194313, 2.51945318, 3.75241041, 2.74363401, 1.99825538, 1.72570557, 4.43276744, 3.286882 , 3.77154885, 3.72282446, 2.92992585, 3.14756233, 3.21077627, 2.37438185, 4.61198055, 2.2579503 , 4.22552193, 4.62147322, 2.43178186, 2.75424586, 2.05810517, 2.22095274, 2.81775414, 3.85760253, 1.81645922, 3.07797286, 3.10042588, 2.82731732, 2.76451102, 2.31603012, 2.09191251, 2.94787639, 3.41267728, 4.01540851, 1.68395962, 3.90255824, 3.51311609, 3.22077668, 3.55564564, 2.92992175, 4.13916929, 3.23918315, 4.73701308, 1.72554215, 3.64632833, ... 3.53385238, 3.96400821, 1.59826907, 3.02219264, 3.52326279, 3.65393681, 2.45093271, 3.48781452, 3.91658352, 2.34613589, 3.25259703, 3.17015047, 3.16667979, 2.67807086, 2.11603546, 2.49445479, 3.36514445, 3.75312481, 2.68802181, 3.56311092, 2.7881923 , 2.9298901 , 4.89720667, 2.42971259, 0.6225873 , 2.5592003 , 1.85744705, 2.03308382, 3.31768733, 2.98958866, 3.91387202, 2.71859076, 1.2710949 , 3.32276425, 2.2595055 , 3.1399085 , 1.02458187, 4.31634952, 2.52474757, 3.40448384, 2.56946285, 1.25752335, 3.24101351, 3.27148997, 3.04600494, 3.16909178, 0.96050023, 3.53995877, 1.77620765, 1.23913768, 3.79689061, 3.70796826, 4.01779955, 2.06952169, 1.78845668, 3.17405391, 3.35729718, 2.96860437, 2.48589282, 2.98871897, 2.79074732, 3.64750211, 4.79004281, 3.54907512, 4.3702815 , 2.90392028, 4.67571219, 1.46078942, 2.96804312, 1.20384525, 2.39910022, 2.09806161, 1.5094592 , 2.96057022, 2.27529829, 2.5121504 , 3.2614401 , 1.94623525, 0.83043339, 2.35074068, 2.48219628, 1.91499112, 3.48524605, 1.41089192, 3.36072859, 1.34145238, 3.84084014, 2.27439918, 2.7224286 , 0.49485186, 3.27505445, 5.00079215, 1.55284319, 3.5372571 , 2.72486107, 3.12746627, 3.91281913, 2.06583832, 1.9641772 , 3.90958519])
home
(sample)
float64
0.694 -0.6541 ... -2.354 -0.9812
array([ 6.94019010e-01, -6.54148558e-01, 4.19842561e-01, 4.52357938e-01, 1.67550552e+00, -5.84746186e-01, 3.99672486e-01, -3.59981861e-01, -1.11943989e+00, -7.95849191e-01, -3.57524302e-01, 3.29908818e-01, 1.99050029e-01, -3.07320362e-01, 3.70982655e-01, -1.05024933e+00, -3.86374347e-02, -2.87432993e-01, -3.99584991e-01, -7.54360970e-01, -3.91055952e-01, 1.12648177e+00, 1.13782005e+00, -1.46756030e+00, -6.23270594e-02, 5.93762667e-01, 6.89766188e-01, 6.58529125e-01, 2.53887470e+00, 7.37861043e-01, 1.52153875e+00, 5.25128792e-01, 6.08288741e-01, -5.20176254e-01, -4.07548322e-01, 3.12436660e-01, 5.72089182e-01, 9.10113563e-01, -2.38647462e-01, -1.93274333e+00, 1.33329493e+00, 1.26708569e+00, -2.60312405e-01, -2.09408981e-01, 6.22058381e-02, 1.62274770e+00, 1.85078925e+00, 1.57478535e+00, 3.54022119e-01, -2.90073123e+00, 2.60361790e-01, 3.50491879e-01, 6.55884293e-01, 1.08391449e+00, -9.71724147e-01, -1.17649262e-02, -1.15137538e+00, -2.36670807e-01, -4.57763530e-01, -4.91458310e-01, -7.80519532e-01, 9.18468164e-01, 1.63882355e+00, 3.64047913e-01, 9.49077393e-01, 2.57647408e-01, 1.10007503e+00, 2.20467011e-01, -1.03676813e+00, -1.75840956e+00, -2.09426074e+00, 1.28916484e+00, -1.00717848e-01, 1.29897321e+00, -1.00966990e+00, -7.29720030e-01, -1.75303437e+00, -2.12672019e+00, -1.63778876e-01, -1.23038514e+00, ... -6.72959667e-02, 1.18979647e+00, -5.70906964e-01, -5.33422753e-01, 5.57313743e-01, -3.40242094e-01, -7.71339059e-01, -1.64795159e+00, 3.23364432e-01, 4.19636745e-01, 1.39218545e-01, -6.32296490e-01, 1.75360522e+00, 3.17069405e-01, 8.67574665e-02, -8.02138964e-02, -5.44626504e-01, 5.36624284e-01, -1.85674227e+00, 4.25120657e-01, 1.91597769e+00, 1.64710250e+00, 2.05062708e+00, -1.29138648e+00, -1.13081138e+00, 1.71825699e+00, -1.17901610e+00, -2.18266184e+00, 2.80710902e-01, 8.47230767e-01, -9.98070398e-01, -2.52323036e-03, 1.27236263e+00, -4.28748136e-01, -4.78389814e-01, -2.57618292e-01, -2.55398216e+00, 1.80280969e+00, 7.18542414e-02, 5.47958885e-01, -1.41942776e-01, -1.00989963e+00, 9.56037099e-01, 8.61350999e-01, 1.39643843e+00, -4.31247252e-02, 1.45207993e+00, 1.38669486e+00, 2.11155213e+00, 6.11025889e-01, -5.52734558e-01, -3.64507848e-01, -3.24557156e-01, 7.45261023e-02, -3.58371929e-01, -2.10579902e+00, -4.98694010e-01, 4.41669667e-01, 1.13863989e+00, -7.64166652e-01, -8.50958376e-01, -1.43011392e-01, 1.72559628e+00, -7.07022925e-01, -3.65693218e-01, 8.25774096e-01, -5.77786876e-01, 1.95009045e-02, -2.23607989e-01, 1.03349878e-01, 3.35059332e-01, -4.08040135e-02, -5.83919972e-02, -1.29612438e+00, -1.43773047e+00, 2.74426161e-01, -7.68347576e-01, 8.67820090e-01, -2.35387516e+00, -9.81185863e-01])
defs_star
(team, sample)
float64
0.003231 0.4705 ... 0.001565
array([[ 3.23118332e-03, 4.70545390e-01, 1.34030478e-01, ..., -7.30740868e-02, -3.22607494e-01, -3.65871420e+00], [ 8.33663246e-03, -2.17816488e-01, -1.46940552e-02, ..., -1.37972122e-01, 3.33663350e+00, 1.37883742e+00], [ 1.06743491e-02, 1.29779805e-01, 5.70789234e-02, ..., -2.25050834e-01, -1.18142767e+00, 1.81600719e+00], [ 1.82780486e-02, 4.52971559e-01, -1.26653605e+00, ..., 8.86369828e-02, 1.22937897e+00, 2.38118755e+00], [ 1.14287147e-03, 4.32566074e-01, 6.84999266e-01, ..., -3.16934721e-01, 1.90925318e+00, -3.08785186e-02], [-3.72524356e-03, -8.01960503e-02, 2.52186627e+00, ..., -3.69411632e-02, -7.00641675e-01, 1.56533900e-03]], shape=(6, 500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (0, 490), (0, 491), (0, 492), (0, 493), (0, 494), (0, 495), (0, 496), (0, 497), (0, 498), (0, 499)], name='sample', length=500))
<xarray.Dataset> Size: 500kB Dimensions: (match: 60, sample: 500) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... * sample (sample) object 4kB MultiIndex * chain (sample) int64 4kB 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 * draw (sample) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: away_points (match, sample) int64 240kB 135 51 9 27 4 4 ... 27 139 23 6 351 home_points (match, sample) int64 240kB 6 22 16 253 78 136 ... 30 801 5 0 1 Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
sample
(sample)
object
MultiIndex
[500 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0
[500 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[500 values with dtype=int64]
away_points
(match, sample)
int64
135 51 9 27 4 4 ... 27 139 23 6 351
array([[ 135, 51, 9, ..., 3, 1, 0], [ 0, 25, 13, ..., 23, 305, 208], [ 0, 91, 3, ..., 23, 3, 6609], ..., [ 159, 69, 2, ..., 1, 2, 130], [ 2, 23, 4, ..., 6, 27, 67], [ 1, 34, 16, ..., 23, 6, 351]], shape=(60, 500))
home_points
(match, sample)
int64
6 22 16 253 78 136 ... 30 801 5 0 1
array([[ 6, 22, 16, ..., 16, 0, 7], [ 2, 26, 162, ..., 21, 0, 64], [ 6, 10, 9, ..., 15, 1, 1], ..., [ 1, 74, 21, ..., 49, 4, 403], [ 0, 51, 17, ..., 21, 0, 1], [ 7, 8, 358, ..., 5, 0, 1]], shape=(60, 500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (0, 490), (0, 491), (0, 492), (0, 493), (0, 494), (0, 495), (0, 496), (0, 497), (0, 498), (0, 499)], name='sample', length=500))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 80kB Dimensions: (sample: 2000) Coordinates: * sample (sample) object 16kB MultiIndex * chain (sample) int64 16kB 0 0 0 0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3 3 3 3 * draw (sample) int64 16kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (sample) float64 16kB -1.189 -1.834 -1.627 ... -0.9111 -1.217 sd_def (sample) float64 16kB -0.5553 -0.7182 -1.126 ... -1.083 -1.028 Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
sample
(sample)
object
MultiIndex
[2000 values with dtype=object]
chain
(sample)
int64
0 0 0 0 0 0 0 0 ... 3 3 3 3 3 3 3 3
[2000 values with dtype=int64]
draw
(sample)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
[2000 values with dtype=int64]
sd_att
(sample)
float64
-1.189 -1.834 ... -0.9111 -1.217
array([-1.18856396, -1.83405005, -1.62695054, ..., -1.18462054, -0.91113177, -1.21687368], shape=(2000,))
sd_def
(sample)
float64
-0.5553 -0.7182 ... -1.083 -1.028
array([-0.55534141, -0.7182 , -1.12636337, ..., -0.62321195, -1.083444 , -1.02832568], shape=(2000,))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), ... (3, 490), (3, 491), (3, 492), (3, 493), (3, 494), (3, 495), (3, 496), (3, 497), (3, 498), (3, 499)], name='sample', length=2000))
We can also take the example of custom InferenceData object and perform stacking. We first check the original object:
import numpy as np datadict = { "a": np.random.randn(100), "b": np.random.randn(1, 100, 10), "c": np.random.randn(1, 100, 3, 4), } coords = { "c1": np.arange(3), "c99": np.arange(4), "b1": np.arange(10), } dims = {"c": ["c1", "c99"], "b": ["b1"]} idata = az.from_dict( posterior=datadict, posterior_predictive=datadict, coords=coords, dims=dims ) idata
<xarray.Dataset> Size: 19kB Dimensions: (chain: 1, draw: 100, b1: 10, c1: 3, c99: 4) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99 * b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9 * c1 (c1) int64 24B 0 1 2 * c99 (c99) int64 32B 0 1 2 3 Data variables: a (chain, draw) float64 800B -1.074 -1.398 2.721 ... 1.628 1.868 b (chain, draw, b1) float64 8kB -0.1768 -0.8806 ... 1.775 0.5064 c (chain, draw, c1, c99) float64 10kB 0.8771 -0.8938 ... -1.676 Attributes: created_at: 2025-07-11T08:43:03.272840+00:00 arviz_version: 0.23.0.dev0
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
c1
(c1)
int64
0 1 2
c99
(c99)
int64
0 1 2 3
a
(chain, draw)
float64
-1.074 -1.398 2.721 ... 1.628 1.868
array([[-1.0740989 , -1.39780503, 2.72145863, 0.06339076, -0.22842167, 0.30042518, -1.17377772, -0.34934314, -1.49156869, 0.37648802, 0.31329098, -1.12179096, 0.12585137, -0.85007395, -0.28935959, 0.49816787, 0.98754133, 0.27884037, 1.65633373, 1.29659632, -0.69879641, 0.60439115, 0.9183406 , -0.46939979, -1.60954034, 0.20231522, 0.48633246, -1.83248771, -1.45179137, -1.34943024, 0.76863709, 0.31500436, -1.95481377, -0.6444053 , 0.17961938, 1.05435498, -0.65859401, 1.19757532, -0.78288293, 0.88136195, -1.02478887, -0.4579298 , -1.02761763, -0.09709048, 0.23160993, 0.53279491, 0.0263035 , 0.20662232, 1.36056216, 0.36218558, 2.76744969, -0.17069727, 1.98975448, -0.96113682, 1.25022581, -0.13306895, -0.08817155, 0.9864382 , 0.80663851, 0.45295664, 0.65778906, 0.25425592, -0.6064972 , -0.19338568, 1.43009688, -0.18075825, -0.79670842, -0.30292092, -0.21682713, -1.36806292, 1.25144475, -0.7773935 , -1.05324936, -0.11710391, 0.12549645, 1.06166162, 0.04204995, 0.41375213, -1.09443152, -0.3044345 , 0.59933272, 0.68666416, -0.66272397, -1.43155432, 0.39865905, 0.35672904, 0.0484824 , -0.34451413, -0.40749395, -0.50962963, -2.20564488, -0.55469917, 0.52309591, 0.4270967 , -0.01529191, -0.39386835, 0.68090495, 1.22621665, 1.62846418, 1.86817727]])
b
(chain, draw, b1)
float64
-0.1768 -0.8806 ... 1.775 0.5064
array([[[-1.76788775e-01, -8.80618848e-01, 7.66966296e-01, 7.00124404e-01, -1.37907834e-01, -2.10534213e+00, 1.93082859e+00, 4.60645636e-01, 3.26552445e-01, -3.13782137e-01], [ 8.15805772e-01, -6.36305514e-01, -1.04063184e+00, -1.93870427e+00, 1.14404649e+00, -3.09734438e-01, -6.68609600e-01, 5.50777452e-01, 1.29110875e+00, 3.18404074e-01], [ 4.20185195e-01, -1.61856976e+00, 4.13938945e-01, -1.59665075e+00, 2.03006051e-01, 4.83392942e-01, 8.20504452e-01, -4.33167249e-01, -5.96347214e-01, -5.16485365e-01], [ 2.87176152e-01, 9.94711979e-02, 2.80495475e-01, 5.52012304e-02, -2.34499189e-01, -9.36766906e-01, -1.10471001e+00, -1.29230873e+00, -4.18806321e-01, 6.23470108e-01], [-2.31120997e-01, -5.36121955e-01, 1.20605817e-01, 8.53668165e-01, -5.02302117e-01, -2.21537099e+00, 2.91172108e+00, 6.00752396e-01, -1.58617187e+00, 1.03483778e+00], ... [-1.54289238e+00, -3.28349097e-01, -7.99669990e-01, 1.06884570e+00, 3.89509872e-01, -5.01673176e-01, 4.93667736e-01, 4.12017499e-01, -4.37939297e-01, 1.55597157e-01], [ 1.36365415e+00, 1.63961268e+00, 1.46104870e-01, -1.98708160e-01, 4.79377338e-01, 7.59196785e-01, 2.28988827e-01, 1.61146055e+00, -1.40852137e+00, -6.06635606e-01], [ 5.44829714e-01, 7.86468952e-01, -1.39237286e-01, -6.19055654e-01, 8.72079241e-01, 5.67089000e-01, -1.01710816e+00, -8.40450836e-02, 1.10545428e+00, 3.27940989e-01], [-6.44865336e-01, -8.21776042e-01, -2.54300281e-01, -2.43241858e-01, -3.40426763e-01, -5.76529949e-01, -7.35854358e-01, 6.53406098e-01, -3.15344115e-01, 2.39685919e-01], [ 4.55849393e-01, -1.31740932e+00, 9.55929431e-01, 2.24319476e-01, -4.47803381e-02, 2.11558574e-01, 2.51681140e-01, 1.05793518e+00, 1.77528664e+00, 5.06355124e-01]]])
c
(chain, draw, c1, c99)
float64
0.8771 -0.8938 ... -0.8961 -1.676
array([[[[ 0.87714638, -0.89381567, -0.72208724, -2.45206538], [-2.51158076, -0.06246607, 1.20791249, -0.02718747], [ 0.21961984, 1.07282331, -1.38367313, 0.18736464]], [[-0.69617624, -0.1861768 , -0.24322499, 0.57637031], [-1.25183566, -0.58671036, -1.16352342, 1.04524252], [ 0.30702461, 0.71977119, 0.43649528, -0.51376369]], [[-1.85566586, 0.70155889, -0.83189579, -0.34839337], [ 2.10141344, 0.14599533, -0.99580585, -0.29028571], [-0.93536352, -0.97804236, -1.12271043, 0.78769121]], ..., [[-0.91902887, 0.09138555, -1.5512119 , -0.04641286], [-0.02960759, -0.34396281, 0.81014572, -1.30803292], [ 1.30720553, -1.69004104, 1.17865902, -0.75518441]], [[ 0.16647193, -0.0827073 , 0.01485072, -0.21209765], [ 0.22249666, 0.21649792, 0.12283385, 0.88717106], [-2.11199959, -0.06319194, 0.17404884, -1.66671723]], [[-1.6126294 , 0.52183191, -0.20210123, -0.86626941], [ 0.34389699, -0.74630044, -0.42397596, 1.06613725], [-0.20454794, 2.17336575, -0.89613505, -1.67553894]]]], shape=(1, 100, 3, 4))
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], dtype='int64', name='draw'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
PandasIndex
PandasIndex(Index([0, 1, 2], dtype='int64', name='c1'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='c99'))
<xarray.Dataset> Size: 19kB Dimensions: (chain: 1, draw: 100, b1: 10, c1: 3, c99: 4) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99 * b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9 * c1 (c1) int64 24B 0 1 2 * c99 (c99) int64 32B 0 1 2 3 Data variables: a (chain, draw) float64 800B -1.074 -1.398 2.721 ... 1.628 1.868 b (chain, draw, b1) float64 8kB -0.1768 -0.8806 ... 1.775 0.5064 c (chain, draw, c1, c99) float64 10kB 0.8771 -0.8938 ... -1.676 Attributes: created_at: 2025-07-11T08:43:03.275032+00:00 arviz_version: 0.23.0.dev0
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
c1
(c1)
int64
0 1 2
c99
(c99)
int64
0 1 2 3
a
(chain, draw)
float64
-1.074 -1.398 2.721 ... 1.628 1.868
array([[-1.0740989 , -1.39780503, 2.72145863, 0.06339076, -0.22842167, 0.30042518, -1.17377772, -0.34934314, -1.49156869, 0.37648802, 0.31329098, -1.12179096, 0.12585137, -0.85007395, -0.28935959, 0.49816787, 0.98754133, 0.27884037, 1.65633373, 1.29659632, -0.69879641, 0.60439115, 0.9183406 , -0.46939979, -1.60954034, 0.20231522, 0.48633246, -1.83248771, -1.45179137, -1.34943024, 0.76863709, 0.31500436, -1.95481377, -0.6444053 , 0.17961938, 1.05435498, -0.65859401, 1.19757532, -0.78288293, 0.88136195, -1.02478887, -0.4579298 , -1.02761763, -0.09709048, 0.23160993, 0.53279491, 0.0263035 , 0.20662232, 1.36056216, 0.36218558, 2.76744969, -0.17069727, 1.98975448, -0.96113682, 1.25022581, -0.13306895, -0.08817155, 0.9864382 , 0.80663851, 0.45295664, 0.65778906, 0.25425592, -0.6064972 , -0.19338568, 1.43009688, -0.18075825, -0.79670842, -0.30292092, -0.21682713, -1.36806292, 1.25144475, -0.7773935 , -1.05324936, -0.11710391, 0.12549645, 1.06166162, 0.04204995, 0.41375213, -1.09443152, -0.3044345 , 0.59933272, 0.68666416, -0.66272397, -1.43155432, 0.39865905, 0.35672904, 0.0484824 , -0.34451413, -0.40749395, -0.50962963, -2.20564488, -0.55469917, 0.52309591, 0.4270967 , -0.01529191, -0.39386835, 0.68090495, 1.22621665, 1.62846418, 1.86817727]])
b
(chain, draw, b1)
float64
-0.1768 -0.8806 ... 1.775 0.5064
array([[[-1.76788775e-01, -8.80618848e-01, 7.66966296e-01, 7.00124404e-01, -1.37907834e-01, -2.10534213e+00, 1.93082859e+00, 4.60645636e-01, 3.26552445e-01, -3.13782137e-01], [ 8.15805772e-01, -6.36305514e-01, -1.04063184e+00, -1.93870427e+00, 1.14404649e+00, -3.09734438e-01, -6.68609600e-01, 5.50777452e-01, 1.29110875e+00, 3.18404074e-01], [ 4.20185195e-01, -1.61856976e+00, 4.13938945e-01, -1.59665075e+00, 2.03006051e-01, 4.83392942e-01, 8.20504452e-01, -4.33167249e-01, -5.96347214e-01, -5.16485365e-01], [ 2.87176152e-01, 9.94711979e-02, 2.80495475e-01, 5.52012304e-02, -2.34499189e-01, -9.36766906e-01, -1.10471001e+00, -1.29230873e+00, -4.18806321e-01, 6.23470108e-01], [-2.31120997e-01, -5.36121955e-01, 1.20605817e-01, 8.53668165e-01, -5.02302117e-01, -2.21537099e+00, 2.91172108e+00, 6.00752396e-01, -1.58617187e+00, 1.03483778e+00], ... [-1.54289238e+00, -3.28349097e-01, -7.99669990e-01, 1.06884570e+00, 3.89509872e-01, -5.01673176e-01, 4.93667736e-01, 4.12017499e-01, -4.37939297e-01, 1.55597157e-01], [ 1.36365415e+00, 1.63961268e+00, 1.46104870e-01, -1.98708160e-01, 4.79377338e-01, 7.59196785e-01, 2.28988827e-01, 1.61146055e+00, -1.40852137e+00, -6.06635606e-01], [ 5.44829714e-01, 7.86468952e-01, -1.39237286e-01, -6.19055654e-01, 8.72079241e-01, 5.67089000e-01, -1.01710816e+00, -8.40450836e-02, 1.10545428e+00, 3.27940989e-01], [-6.44865336e-01, -8.21776042e-01, -2.54300281e-01, -2.43241858e-01, -3.40426763e-01, -5.76529949e-01, -7.35854358e-01, 6.53406098e-01, -3.15344115e-01, 2.39685919e-01], [ 4.55849393e-01, -1.31740932e+00, 9.55929431e-01, 2.24319476e-01, -4.47803381e-02, 2.11558574e-01, 2.51681140e-01, 1.05793518e+00, 1.77528664e+00, 5.06355124e-01]]])
c
(chain, draw, c1, c99)
float64
0.8771 -0.8938 ... -0.8961 -1.676
array([[[[ 0.87714638, -0.89381567, -0.72208724, -2.45206538], [-2.51158076, -0.06246607, 1.20791249, -0.02718747], [ 0.21961984, 1.07282331, -1.38367313, 0.18736464]], [[-0.69617624, -0.1861768 , -0.24322499, 0.57637031], [-1.25183566, -0.58671036, -1.16352342, 1.04524252], [ 0.30702461, 0.71977119, 0.43649528, -0.51376369]], [[-1.85566586, 0.70155889, -0.83189579, -0.34839337], [ 2.10141344, 0.14599533, -0.99580585, -0.29028571], [-0.93536352, -0.97804236, -1.12271043, 0.78769121]], ..., [[-0.91902887, 0.09138555, -1.5512119 , -0.04641286], [-0.02960759, -0.34396281, 0.81014572, -1.30803292], [ 1.30720553, -1.69004104, 1.17865902, -0.75518441]], [[ 0.16647193, -0.0827073 , 0.01485072, -0.21209765], [ 0.22249666, 0.21649792, 0.12283385, 0.88717106], [-2.11199959, -0.06319194, 0.17404884, -1.66671723]], [[-1.6126294 , 0.52183191, -0.20210123, -0.86626941], [ 0.34389699, -0.74630044, -0.42397596, 1.06613725], [-0.20454794, 2.17336575, -0.89613505, -1.67553894]]]], shape=(1, 100, 3, 4))
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], dtype='int64', name='draw'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
PandasIndex
PandasIndex(Index([0, 1, 2], dtype='int64', name='c1'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='c99'))
In order to stack two dimensions c1
and c99
to z
, we can use:
idata.stack(z=["c1", "c99"], inplace=True) idata
<xarray.Dataset> Size: 20kB Dimensions: (chain: 1, draw: 100, b1: 10, z: 12) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99 * b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9 * z (z) object 96B MultiIndex * c1 (z) int64 96B 0 0 0 0 1 1 1 1 2 2 2 2 * c99 (z) int64 96B 0 1 2 3 0 1 2 3 0 1 2 3 Data variables: a (chain, draw) float64 800B -1.074 -1.398 2.721 ... 1.628 1.868 b (chain, draw, b1) float64 8kB -0.1768 -0.8806 ... 1.775 0.5064 c (chain, draw, z) float64 10kB 0.8771 -0.8938 ... -0.8961 -1.676 Attributes: created_at: 2025-07-11T08:43:03.272840+00:00 arviz_version: 0.23.0.dev0
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
z
(z)
object
MultiIndex
[12 values with dtype=object]
c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
[12 values with dtype=int64]
c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
[12 values with dtype=int64]
a
(chain, draw)
float64
-1.074 -1.398 2.721 ... 1.628 1.868
array([[-1.0740989 , -1.39780503, 2.72145863, 0.06339076, -0.22842167, 0.30042518, -1.17377772, -0.34934314, -1.49156869, 0.37648802, 0.31329098, -1.12179096, 0.12585137, -0.85007395, -0.28935959, 0.49816787, 0.98754133, 0.27884037, 1.65633373, 1.29659632, -0.69879641, 0.60439115, 0.9183406 , -0.46939979, -1.60954034, 0.20231522, 0.48633246, -1.83248771, -1.45179137, -1.34943024, 0.76863709, 0.31500436, -1.95481377, -0.6444053 , 0.17961938, 1.05435498, -0.65859401, 1.19757532, -0.78288293, 0.88136195, -1.02478887, -0.4579298 , -1.02761763, -0.09709048, 0.23160993, 0.53279491, 0.0263035 , 0.20662232, 1.36056216, 0.36218558, 2.76744969, -0.17069727, 1.98975448, -0.96113682, 1.25022581, -0.13306895, -0.08817155, 0.9864382 , 0.80663851, 0.45295664, 0.65778906, 0.25425592, -0.6064972 , -0.19338568, 1.43009688, -0.18075825, -0.79670842, -0.30292092, -0.21682713, -1.36806292, 1.25144475, -0.7773935 , -1.05324936, -0.11710391, 0.12549645, 1.06166162, 0.04204995, 0.41375213, -1.09443152, -0.3044345 , 0.59933272, 0.68666416, -0.66272397, -1.43155432, 0.39865905, 0.35672904, 0.0484824 , -0.34451413, -0.40749395, -0.50962963, -2.20564488, -0.55469917, 0.52309591, 0.4270967 , -0.01529191, -0.39386835, 0.68090495, 1.22621665, 1.62846418, 1.86817727]])
b
(chain, draw, b1)
float64
-0.1768 -0.8806 ... 1.775 0.5064
array([[[-1.76788775e-01, -8.80618848e-01, 7.66966296e-01, 7.00124404e-01, -1.37907834e-01, -2.10534213e+00, 1.93082859e+00, 4.60645636e-01, 3.26552445e-01, -3.13782137e-01], [ 8.15805772e-01, -6.36305514e-01, -1.04063184e+00, -1.93870427e+00, 1.14404649e+00, -3.09734438e-01, -6.68609600e-01, 5.50777452e-01, 1.29110875e+00, 3.18404074e-01], [ 4.20185195e-01, -1.61856976e+00, 4.13938945e-01, -1.59665075e+00, 2.03006051e-01, 4.83392942e-01, 8.20504452e-01, -4.33167249e-01, -5.96347214e-01, -5.16485365e-01], [ 2.87176152e-01, 9.94711979e-02, 2.80495475e-01, 5.52012304e-02, -2.34499189e-01, -9.36766906e-01, -1.10471001e+00, -1.29230873e+00, -4.18806321e-01, 6.23470108e-01], [-2.31120997e-01, -5.36121955e-01, 1.20605817e-01, 8.53668165e-01, -5.02302117e-01, -2.21537099e+00, 2.91172108e+00, 6.00752396e-01, -1.58617187e+00, 1.03483778e+00], ... [-1.54289238e+00, -3.28349097e-01, -7.99669990e-01, 1.06884570e+00, 3.89509872e-01, -5.01673176e-01, 4.93667736e-01, 4.12017499e-01, -4.37939297e-01, 1.55597157e-01], [ 1.36365415e+00, 1.63961268e+00, 1.46104870e-01, -1.98708160e-01, 4.79377338e-01, 7.59196785e-01, 2.28988827e-01, 1.61146055e+00, -1.40852137e+00, -6.06635606e-01], [ 5.44829714e-01, 7.86468952e-01, -1.39237286e-01, -6.19055654e-01, 8.72079241e-01, 5.67089000e-01, -1.01710816e+00, -8.40450836e-02, 1.10545428e+00, 3.27940989e-01], [-6.44865336e-01, -8.21776042e-01, -2.54300281e-01, -2.43241858e-01, -3.40426763e-01, -5.76529949e-01, -7.35854358e-01, 6.53406098e-01, -3.15344115e-01, 2.39685919e-01], [ 4.55849393e-01, -1.31740932e+00, 9.55929431e-01, 2.24319476e-01, -4.47803381e-02, 2.11558574e-01, 2.51681140e-01, 1.05793518e+00, 1.77528664e+00, 5.06355124e-01]]])
c
(chain, draw, z)
float64
0.8771 -0.8938 ... -0.8961 -1.676
array([[[ 0.87714638, -0.89381567, -0.72208724, ..., 1.07282331, -1.38367313, 0.18736464], [-0.69617624, -0.1861768 , -0.24322499, ..., 0.71977119, 0.43649528, -0.51376369], [-1.85566586, 0.70155889, -0.83189579, ..., -0.97804236, -1.12271043, 0.78769121], ..., [-0.91902887, 0.09138555, -1.5512119 , ..., -1.69004104, 1.17865902, -0.75518441], [ 0.16647193, -0.0827073 , 0.01485072, ..., -0.06319194, 0.17404884, -1.66671723], [-1.6126294 , 0.52183191, -0.20210123, ..., 2.17336575, -0.89613505, -1.67553894]]], shape=(1, 100, 12))
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], dtype='int64', name='draw'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)], name='z'))
<xarray.Dataset> Size: 20kB Dimensions: (chain: 1, draw: 100, b1: 10, z: 12) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 800B 0 1 2 3 4 5 6 7 8 ... 91 92 93 94 95 96 97 98 99 * b1 (b1) int64 80B 0 1 2 3 4 5 6 7 8 9 * z (z) object 96B MultiIndex * c1 (z) int64 96B 0 0 0 0 1 1 1 1 2 2 2 2 * c99 (z) int64 96B 0 1 2 3 0 1 2 3 0 1 2 3 Data variables: a (chain, draw) float64 800B -1.074 -1.398 2.721 ... 1.628 1.868 b (chain, draw, b1) float64 8kB -0.1768 -0.8806 ... 1.775 0.5064 c (chain, draw, z) float64 10kB 0.8771 -0.8938 ... -0.8961 -1.676 Attributes: created_at: 2025-07-11T08:43:03.275032+00:00 arviz_version: 0.23.0.dev0
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
b1
(b1)
int64
0 1 2 3 4 5 6 7 8 9
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
z
(z)
object
MultiIndex
[12 values with dtype=object]
c1
(z)
int64
0 0 0 0 1 1 1 1 2 2 2 2
[12 values with dtype=int64]
c99
(z)
int64
0 1 2 3 0 1 2 3 0 1 2 3
[12 values with dtype=int64]
a
(chain, draw)
float64
-1.074 -1.398 2.721 ... 1.628 1.868
array([[-1.0740989 , -1.39780503, 2.72145863, 0.06339076, -0.22842167, 0.30042518, -1.17377772, -0.34934314, -1.49156869, 0.37648802, 0.31329098, -1.12179096, 0.12585137, -0.85007395, -0.28935959, 0.49816787, 0.98754133, 0.27884037, 1.65633373, 1.29659632, -0.69879641, 0.60439115, 0.9183406 , -0.46939979, -1.60954034, 0.20231522, 0.48633246, -1.83248771, -1.45179137, -1.34943024, 0.76863709, 0.31500436, -1.95481377, -0.6444053 , 0.17961938, 1.05435498, -0.65859401, 1.19757532, -0.78288293, 0.88136195, -1.02478887, -0.4579298 , -1.02761763, -0.09709048, 0.23160993, 0.53279491, 0.0263035 , 0.20662232, 1.36056216, 0.36218558, 2.76744969, -0.17069727, 1.98975448, -0.96113682, 1.25022581, -0.13306895, -0.08817155, 0.9864382 , 0.80663851, 0.45295664, 0.65778906, 0.25425592, -0.6064972 , -0.19338568, 1.43009688, -0.18075825, -0.79670842, -0.30292092, -0.21682713, -1.36806292, 1.25144475, -0.7773935 , -1.05324936, -0.11710391, 0.12549645, 1.06166162, 0.04204995, 0.41375213, -1.09443152, -0.3044345 , 0.59933272, 0.68666416, -0.66272397, -1.43155432, 0.39865905, 0.35672904, 0.0484824 , -0.34451413, -0.40749395, -0.50962963, -2.20564488, -0.55469917, 0.52309591, 0.4270967 , -0.01529191, -0.39386835, 0.68090495, 1.22621665, 1.62846418, 1.86817727]])
b
(chain, draw, b1)
float64
-0.1768 -0.8806 ... 1.775 0.5064
array([[[-1.76788775e-01, -8.80618848e-01, 7.66966296e-01, 7.00124404e-01, -1.37907834e-01, -2.10534213e+00, 1.93082859e+00, 4.60645636e-01, 3.26552445e-01, -3.13782137e-01], [ 8.15805772e-01, -6.36305514e-01, -1.04063184e+00, -1.93870427e+00, 1.14404649e+00, -3.09734438e-01, -6.68609600e-01, 5.50777452e-01, 1.29110875e+00, 3.18404074e-01], [ 4.20185195e-01, -1.61856976e+00, 4.13938945e-01, -1.59665075e+00, 2.03006051e-01, 4.83392942e-01, 8.20504452e-01, -4.33167249e-01, -5.96347214e-01, -5.16485365e-01], [ 2.87176152e-01, 9.94711979e-02, 2.80495475e-01, 5.52012304e-02, -2.34499189e-01, -9.36766906e-01, -1.10471001e+00, -1.29230873e+00, -4.18806321e-01, 6.23470108e-01], [-2.31120997e-01, -5.36121955e-01, 1.20605817e-01, 8.53668165e-01, -5.02302117e-01, -2.21537099e+00, 2.91172108e+00, 6.00752396e-01, -1.58617187e+00, 1.03483778e+00], ... [-1.54289238e+00, -3.28349097e-01, -7.99669990e-01, 1.06884570e+00, 3.89509872e-01, -5.01673176e-01, 4.93667736e-01, 4.12017499e-01, -4.37939297e-01, 1.55597157e-01], [ 1.36365415e+00, 1.63961268e+00, 1.46104870e-01, -1.98708160e-01, 4.79377338e-01, 7.59196785e-01, 2.28988827e-01, 1.61146055e+00, -1.40852137e+00, -6.06635606e-01], [ 5.44829714e-01, 7.86468952e-01, -1.39237286e-01, -6.19055654e-01, 8.72079241e-01, 5.67089000e-01, -1.01710816e+00, -8.40450836e-02, 1.10545428e+00, 3.27940989e-01], [-6.44865336e-01, -8.21776042e-01, -2.54300281e-01, -2.43241858e-01, -3.40426763e-01, -5.76529949e-01, -7.35854358e-01, 6.53406098e-01, -3.15344115e-01, 2.39685919e-01], [ 4.55849393e-01, -1.31740932e+00, 9.55929431e-01, 2.24319476e-01, -4.47803381e-02, 2.11558574e-01, 2.51681140e-01, 1.05793518e+00, 1.77528664e+00, 5.06355124e-01]]])
c
(chain, draw, z)
float64
0.8771 -0.8938 ... -0.8961 -1.676
array([[[ 0.87714638, -0.89381567, -0.72208724, ..., 1.07282331, -1.38367313, 0.18736464], [-0.69617624, -0.1861768 , -0.24322499, ..., 0.71977119, 0.43649528, -0.51376369], [-1.85566586, 0.70155889, -0.83189579, ..., -0.97804236, -1.12271043, 0.78769121], ..., [-0.91902887, 0.09138555, -1.5512119 , ..., -1.69004104, 1.17865902, -0.75518441], [ 0.16647193, -0.0827073 , 0.01485072, ..., -0.06319194, 0.17404884, -1.66671723], [-1.6126294 , 0.52183191, -0.20210123, ..., 2.17336575, -0.89613505, -1.67553894]]], shape=(1, 100, 12))
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], dtype='int64', name='draw'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64', name='b1'))
PandasMultiIndex
PandasIndex(MultiIndex([(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)], name='z'))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4