Apply a function to multiple groups.
Applies fun
groupwise to the selected InferenceData
groups and overwrites the group with the result of the function.
callable()
Function to be applied to each group. Assumes the function is called as fun(dataset, *args, **kwargs)
.
str
or list
of str
, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
None
, “like”, “regex”}, optional
If None
(default), interpret var_names as the real variables names. If “like”, interpret var_names as substrings of the real variables names. If “regex”, interpret var_names as regular expressions on the real variables names. A la pandas.filter
.
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
Positional arguments passed to fun
.
mapping
, optional
Keyword arguments passed to fun
.
InferenceData
A new InferenceData object by default. When inplace==True
perform selection in place and return None
Examples
Shift observed_data, prior_predictive and posterior_predictive.
import arviz as az import numpy as np idata = az.load_arviz_data("non_centered_eight") idata_shifted_obs = idata.map(lambda x: x + 3, groups="observed_vars") idata_shifted_obs
<xarray.Dataset> Size: 293kB Dimensions: (chain: 4, draw: 500, school: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu (chain, draw) float64 16kB ... theta_t (chain, draw, school) float64 128kB ... tau (chain, draw) float64 16kB ... theta (chain, draw, school) float64 128kB ... Attributes: created_at: 2022-10-13T14:37:26.351883 arviz_version: 0.13.0.dev0 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 4.738754749298096 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
mu
(chain, draw)
float64
...
[2000 values with dtype=float64]
theta_t
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
tau
(chain, draw)
float64
...
[2000 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 132kB Dimensions: (chain: 4, draw: 500, obs_dim_0: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_dim_0 (obs_dim_0) int64 64B 0 1 2 3 4 5 6 7 Data variables: obs (chain, draw, obs_dim_0) float64 128kB -8.912 0.4851 ... 27.95 Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:34.333731 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_dim_0
(obs_dim_0)
int64
0 1 2 3 4 5 6 7
array([0, 1, 2, 3, 4, 5, 6, 7])
obs
(chain, draw, obs_dim_0)
float64
-8.912 0.4851 -4.71 ... 13.55 27.95
array([[[ -8.91164858, 0.48513691, -4.70995568, ..., 25.54688492, 13.94575018, 9.80299148], [ 37.4801699 , -10.77370835, -0.5719224 , ..., 0.43335956, 27.32805956, 14.09089747], [ 17.70959145, -11.12171465, -21.98355095, ..., 19.10421895, 8.85410192, -8.10962076], ..., [ 27.27407986, 7.61924923, 26.24515535, ..., -0.3350811 , 11.69606961, 39.63282956], [ 4.79252722, 0.43572688, -9.33809594, ..., 9.92145935, -5.72201279, 4.97166968], [ 8.34887428, 8.83802449, 4.87002072, ..., 9.48416992, -5.19603508, -1.88720116]], [[ 14.660454 , 14.56500642, 30.54658322, ..., 0.820571 , 17.58317036, 11.41523916], [ 12.23886235, 17.66178128, 10.9959666 , ..., 19.48767939, 31.47333474, 14.07945178], [ 33.47381555, 23.8333277 , -0.67617714, ..., 7.95021076, 8.66776442, 36.76402444], ... [ 45.14657727, 19.31827266, -13.77595216, ..., 21.35397137, 12.08007358, 19.71077765], [ 14.1760222 , -4.54869822, 8.69720246, ..., 7.5198413 , -9.63781631, -15.25261963], [ 9.0665652 , -24.09127382, -5.36918153, ..., 27.94605585, -5.79860404, -35.2355531 ]], [[ 27.4155747 , 27.81444338, 22.10513881, ..., 12.74755666, 14.5126698 , 14.57236846], [ -3.76124287, -20.82045621, 31.33247223, ..., 13.29821842, 1.41832433, 16.34246786], [ -7.00712196, -7.93492977, 9.95458309, ..., -11.32537975, 21.94623035, 10.70530684], ..., [ 13.80440934, 15.44637947, -10.90413704, ..., 10.01640909, 16.47727939, 31.34665798], [-11.99095788, 5.75164919, 28.06463307, ..., 3.68615864, -12.96358662, -10.4495535 ], [ 12.81063159, 14.01071347, 17.28607254, ..., 7.91079619, 13.55415258, 27.94927617]]], shape=(4, 500, 8))
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='obs_dim_0'))
<xarray.Dataset> Size: 132kB Dimensions: (chain: 4, draw: 500, obs_dim_0: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_dim_0 (obs_dim_0) int64 64B 0 1 2 3 4 5 6 7 Data variables: obs (chain, draw, obs_dim_0) float64 128kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.571887 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_dim_0
(obs_dim_0)
int64
0 1 2 3 4 5 6 7
array([0, 1, 2, 3, 4, 5, 6, 7])
obs
(chain, draw, obs_dim_0)
float64
...
[16000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='obs_dim_0'))
<xarray.Dataset> Size: 246kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/16) lp (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... perf_counter_diff (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... diverging (chain, draw) bool 2kB ... ... ... max_energy_error (chain, draw) float64 16kB ... n_steps (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy_error (chain, draw) float64 16kB ... smallest_eigval (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.362154 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 4.738754749298096 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 77kB Dimensions: (chain: 1, draw: 500, school: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu (chain, draw) float64 4kB ... theta_t (chain, draw, school) float64 32kB ... theta (chain, draw, school) float64 32kB ... tau (chain, draw) float64 4kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:18.108887 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
mu
(chain, draw)
float64
...
[500 values with dtype=float64]
theta_t
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
tau
(chain, draw)
float64
...
[500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 1, draw: 500, obs_dim_0: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_dim_0 (obs_dim_0) int64 64B 0 1 2 3 4 5 6 7 Data variables: obs (chain, draw, obs_dim_0) float64 32kB 25.87 -10.84 ... 17.32 Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:18.111951 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_dim_0
(obs_dim_0)
int64
0 1 2 3 4 5 6 7
array([0, 1, 2, 3, 4, 5, 6, 7])
obs
(chain, draw, obs_dim_0)
float64
25.87 -10.84 64.31 ... -4.658 17.32
array([[[ 25.86573102, -10.83562762, 64.30603396, ..., 34.12327354, -31.15539197, 17.40041595], [ 21.2308377 , -15.94389655, 26.47959507, ..., 27.48371569, 12.54871934, 12.21388191], [ -14.10920978, 30.7429682 , -13.36386214, ..., 17.25866094, -20.52897454, -14.60687912], ..., [ -26.10606168, 13.11608297, 15.12723183, ..., 17.87300987, 7.58948329, 12.374558 ], [ -38.39050122, -45.43587181, -47.4225284 , ..., 6.77697971, -168.96059997, 1.26974321], [ 28.73909128, 20.70475211, 3.50257694, ..., 20.58279319, -4.65758653, 17.32397509]]], shape=(1, 500, 8))
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='obs_dim_0'))
<xarray.Dataset> Size: 128B Dimensions: (obs_dim_0: 8) Coordinates: * obs_dim_0 (obs_dim_0) int64 64B 0 1 2 3 4 5 6 7 Data variables: obs (obs_dim_0) float64 64B 31.0 11.0 0.0 10.0 2.0 4.0 21.0 15.0 Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:18.113060 inference_library: pymc inference_library_version: 4.2.2
obs_dim_0
(obs_dim_0)
int64
0 1 2 3 4 5 6 7
array([0, 1, 2, 3, 4, 5, 6, 7])
obs
(obs_dim_0)
float64
31.0 11.0 0.0 ... 4.0 21.0 15.0
array([31., 11., 0., 10., 2., 4., 21., 15.])
PandasIndex
PandasIndex(Index([0, 1, 2, 3, 4, 5, 6, 7], dtype='int64', name='obs_dim_0'))
<xarray.Dataset> Size: 576B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: scores (school) float64 64B ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:18.114126 inference_library: pymc inference_library_version: 4.2.2
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
scores
(school)
float64
...
[8 values with dtype=float64]
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
Rename and update the coordinate values in both posterior and prior groups.
idata = az.load_arviz_data("radon") idata = idata.map( lambda ds: ds.rename({"g_coef": "uranium_coefs"}).assign( uranium_coefs=["intercept", "u_slope"] ), groups=["posterior", "prior"] ) idata
<xarray.Dataset> Size: 4MB Dimensions: (chain: 4, draw: 500, uranium_coefs: 2, County: 85) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' * uranium_coefs (uranium_coefs) <U9 72B 'intercept' 'u_slope' Data variables: g (chain, draw, uranium_coefs) float64 32kB ... za_county (chain, draw, County) float64 1MB ... b (chain, draw) float64 16kB ... sigma_a (chain, draw) float64 16kB ... a (chain, draw, County) float64 1MB ... a_county (chain, draw, County) float64 1MB ... sigma (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.191355 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
uranium_coefs
(uranium_coefs)
<U9
'intercept' 'u_slope'
array(['intercept', 'u_slope'], dtype='<U9')
g
(chain, draw, uranium_coefs)
float64
...
[4000 values with dtype=float64]
za_county
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
b
(chain, draw)
float64
...
[2000 values with dtype=float64]
sigma_a
(chain, draw)
float64
...
[2000 values with dtype=float64]
a
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
a_county
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
sigma
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
PandasIndex
PandasIndex(Index(['intercept', 'u_slope'], dtype='object', name='uranium_coefs'))
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.449843 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[1838000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.448264 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[1838000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 150kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: step_size_bar (chain, draw) float64 16kB ... diverging (chain, draw) bool 2kB ... energy (chain, draw) float64 16kB ... tree_size (chain, draw) float64 16kB ... mean_tree_accept (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... depth (chain, draw) int64 16kB ... energy_error (chain, draw) float64 16kB ... lp (chain, draw) float64 16kB ... max_energy_error (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.197697 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
mean_tree_accept
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 1MB Dimensions: (chain: 1, draw: 500, County: 85, uranium_coefs: 2) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' * uranium_coefs (uranium_coefs) <U9 72B 'intercept' 'u_slope' Data variables: a_county (chain, draw, County) float64 340kB ... sigma_log__ (chain, draw) float64 4kB ... sigma_a (chain, draw) float64 4kB ... a (chain, draw, County) float64 340kB ... b (chain, draw) float64 4kB ... za_county (chain, draw, County) float64 340kB ... sigma (chain, draw) float64 4kB ... g (chain, draw, uranium_coefs) float64 8kB ... sigma_a_log__ (chain, draw) float64 4kB ... Attributes: created_at: 2020-07-24T18:15:12.454586 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
uranium_coefs
(uranium_coefs)
<U9
'intercept' 'u_slope'
array(['intercept', 'u_slope'], dtype='<U9')
a_county
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
sigma_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
sigma_a
(chain, draw)
float64
...
[500 values with dtype=float64]
a
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
b
(chain, draw)
float64
...
[500 values with dtype=float64]
za_county
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
sigma
(chain, draw)
float64
...
[500 values with dtype=float64]
g
(chain, draw, uranium_coefs)
float64
...
[1000 values with dtype=float64]
sigma_a_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
PandasIndex
PandasIndex(Index(['intercept', 'u_slope'], dtype='object', name='uranium_coefs'))
<xarray.Dataset> Size: 4MB Dimensions: (chain: 1, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 4MB ... Attributes: created_at: 2020-07-24T18:15:12.457652 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[459500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 15kB Dimensions: (obs_id: 919) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (obs_id) float64 7kB ... Attributes: created_at: 2020-07-24T18:15:12.458415 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(obs_id)
float64
...
[919 values with dtype=float64]
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 21kB Dimensions: (obs_id: 919, County: 85) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 ... 912 913 914 915 916 917 918 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' Data variables: floor_idx (obs_id) int32 4kB ... county_idx (obs_id) int32 4kB ... uranium (County) float64 680B ... Attributes: created_at: 2020-07-24T18:15:12.459832 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
floor_idx
(obs_id)
int32
...
[919 values with dtype=int32]
county_idx
(obs_id)
int32
...
[919 values with dtype=int32]
uranium
(County)
float64
...
[85 values with dtype=float64]
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
Add extra coordinates to all groups containing observed variables
idata = az.load_arviz_data("rugby") home_team, away_team = np.array([ m.split() for m in idata.observed_data.match.values ]).T idata = idata.map( lambda ds, **kwargs: ds.assign_coords(**kwargs), groups="observed_vars", home_team=("match", home_team), away_team=("match", away_team), ) idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB 'Wales' 'France' ... 'France' 'Ireland' away_team (match) <U8 2kB 'Italy' 'England' ... 'Wales' 'England' Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
'Wales' 'France' ... 'Ireland'
array(['Wales', 'France', 'Ireland', 'Ireland', 'Scotland', 'France', 'Wales', 'Italy', 'England', 'Ireland', 'Scotland', 'England', 'Italy', 'Wales', 'France', 'Wales', 'Italy', 'France', 'England', 'Ireland', 'Scotland', 'Scotland', 'France', 'Ireland', 'Wales', 'England', 'Italy', 'Italy', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'France', 'Wales', 'Italy', 'Wales', 'Italy', 'England', 'Ireland', 'England', 'Scotland', 'Wales', 'Ireland', 'France', 'Scotland', 'England', 'Italy', 'Italy', 'Wales', 'France', 'Scotland', 'Ireland', 'England', 'Wales', 'Italy', 'England', 'Scotland', 'France', 'Ireland'], dtype='<U8')
away_team
(match)
<U8
'Italy' 'England' ... 'England'
array(['Italy', 'England', 'Scotland', 'Wales', 'England', 'Italy', 'France', 'Scotland', 'Ireland', 'Italy', 'France', 'Wales', 'England', 'Scotland', 'Ireland', 'England', 'Ireland', 'Scotland', 'Italy', 'France', 'Wales', 'Italy', 'Wales', 'England', 'Ireland', 'Scotland', 'France', 'Wales', 'Ireland', 'France', 'Italy', 'England', 'Wales', 'Ireland', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'Italy', 'Wales', 'France', 'Italy', 'Scotland', 'England', 'Ireland', 'France', 'Wales', 'Ireland', 'England', 'Scotland', 'Wales', 'France', 'Italy', 'Ireland', 'France', 'Scotland', 'Italy', 'Wales', 'England'], dtype='<U8')
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) float64 960kB ... away_points (chain, draw, match) float64 960kB ... Attributes: created_at: 2024-03-06T20:46:24.120642 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB 'Wales' 'France' ... 'France' 'Ireland' away_team (match) <U8 2kB 'Italy' 'England' ... 'Wales' 'England' Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
'Wales' 'France' ... 'Ireland'
array(['Wales', 'France', 'Ireland', 'Ireland', 'Scotland', 'France', 'Wales', 'Italy', 'England', 'Ireland', 'Scotland', 'England', 'Italy', 'Wales', 'France', 'Wales', 'Italy', 'France', 'England', 'Ireland', 'Scotland', 'Scotland', 'France', 'Ireland', 'Wales', 'England', 'Italy', 'Italy', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'France', 'Wales', 'Italy', 'Wales', 'Italy', 'England', 'Ireland', 'England', 'Scotland', 'Wales', 'Ireland', 'France', 'Scotland', 'England', 'Italy', 'Italy', 'Wales', 'France', 'Scotland', 'Ireland', 'England', 'Wales', 'Italy', 'England', 'Scotland', 'France', 'Ireland'], dtype='<U8')
away_team
(match)
<U8
'Italy' 'England' ... 'England'
array(['Italy', 'England', 'Scotland', 'Wales', 'England', 'Italy', 'France', 'Scotland', 'Ireland', 'Italy', 'France', 'Wales', 'England', 'Scotland', 'Ireland', 'England', 'Ireland', 'Scotland', 'Italy', 'France', 'Wales', 'Italy', 'Wales', 'England', 'Ireland', 'Scotland', 'France', 'Wales', 'Ireland', 'France', 'Italy', 'England', 'Wales', 'Ireland', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'Italy', 'Wales', 'France', 'Italy', 'Scotland', 'England', 'Ireland', 'France', 'Wales', 'Ireland', 'England', 'Scotland', 'Wales', 'France', 'Italy', 'Ireland', 'France', 'Scotland', 'Italy', 'Wales', 'England'], dtype='<U8')
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB 'Wales' 'France' ... 'France' 'Ireland' away_team (match) <U8 2kB 'Italy' 'England' ... 'Wales' 'England' Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
'Wales' 'France' ... 'Ireland'
array(['Wales', 'France', 'Ireland', 'Ireland', 'Scotland', 'France', 'Wales', 'Italy', 'England', 'Ireland', 'Scotland', 'England', 'Italy', 'Wales', 'France', 'Wales', 'Italy', 'France', 'England', 'Ireland', 'Scotland', 'Scotland', 'France', 'Ireland', 'Wales', 'England', 'Italy', 'Italy', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'France', 'Wales', 'Italy', 'Wales', 'Italy', 'England', 'Ireland', 'England', 'Scotland', 'Wales', 'Ireland', 'France', 'Scotland', 'England', 'Italy', 'Italy', 'Wales', 'France', 'Scotland', 'Ireland', 'England', 'Wales', 'Italy', 'England', 'Scotland', 'France', 'Ireland'], dtype='<U8')
away_team
(match)
<U8
'Italy' 'England' ... 'England'
array(['Italy', 'England', 'Scotland', 'Wales', 'England', 'Italy', 'France', 'Scotland', 'Ireland', 'Italy', 'France', 'Wales', 'England', 'Scotland', 'Ireland', 'England', 'Ireland', 'Scotland', 'Italy', 'France', 'Wales', 'Italy', 'Wales', 'England', 'Ireland', 'Scotland', 'France', 'Wales', 'Ireland', 'France', 'Italy', 'England', 'Wales', 'Ireland', 'Scotland', 'England', 'France', 'Scotland', 'Ireland', 'Italy', 'Wales', 'France', 'Italy', 'Scotland', 'England', 'Ireland', 'France', 'Wales', 'Ireland', 'England', 'Scotland', 'Wales', 'France', 'Italy', 'Ireland', 'France', 'Scotland', 'Italy', 'Wales', 'England'], dtype='<U8')
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4