Perform an xarray selection on all groups.
Loops groups to perform Dataset.sel(key=item) for every kwarg if key is a dimension of the dataset. One example could be performing a burn in cut on the InferenceData object or discarding a chain. The selection is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.sel
str
or list
of str
, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
None
, “like”, “regex”}, optional, default=None
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
deprecated
If False
, do not select prior related groups using chain
dim. Otherwise, use selection on chain
if present. Default=False
dict
, optional
It must be accepted by Dataset.sel().
InferenceData
A new InferenceData object by default. When inplace==True
perform selection in-place and return None
See also
xarray.Dataset.sel
Returns a new dataset with each array indexed by tick labels along the specified dimension(s).
isel
Returns a new dataset with each array indexed along the specified dimension(s).
Examples
Use sel
to discard one chain of the InferenceData object. We first check the dimensions of the original object:
import arviz as az idata = az.load_arviz_data("centered_eight") idata
<xarray.Dataset> Size: 165kB Dimensions: (chain: 4, draw: 500, school: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu (chain, draw) float64 16kB ... theta (chain, draw, school) float64 128kB ... tau (chain, draw) float64 16kB ... Attributes: created_at: 2022-10-13T14:37:37.315398 arviz_version: 0.13.0.dev0 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 7.480114936828613 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
mu
(chain, draw)
float64
...
[2000 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
tau
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 133kB Dimensions: (chain: 4, draw: 500, school: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 128kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:41.460544 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 133kB Dimensions: (chain: 4, draw: 500, school: 8) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 128kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:37.487399 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[16000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 246kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/16) max_energy_error (chain, draw) float64 16kB ... energy_error (chain, draw) float64 16kB ... lp (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... acceptance_rate (chain, draw) float64 16kB ... diverging (chain, draw) bool 2kB ... ... ... smallest_eigval (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... perf_counter_diff (chain, draw) float64 16kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:37.324929 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 7.480114936828613 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 45kB Dimensions: (chain: 1, draw: 500, school: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: tau (chain, draw) float64 4kB ... theta (chain, draw, school) float64 32kB ... mu (chain, draw) float64 4kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.602116 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
tau
(chain, draw)
float64
...
[500 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
mu
(chain, draw)
float64
...
[500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 37kB Dimensions: (chain: 1, draw: 500, school: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 32kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.604969 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 576B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (school) float64 64B ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.606375 inference_library: pymc inference_library_version: 4.2.2
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(school)
float64
...
[8 values with dtype=float64]
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 576B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: scores (school) float64 64B ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.607471 inference_library: pymc inference_library_version: 4.2.2
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
scores
(school)
float64
...
[8 values with dtype=float64]
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
In order to remove the third chain:
idata_subset = idata.sel(chain=[0, 1, 3], groups="posterior_groups") idata_subset
<xarray.Dataset> Size: 125kB Dimensions: (chain: 3, draw: 500, school: 8) Coordinates: * chain (chain) int64 24B 0 1 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: mu (chain, draw) float64 12kB ... theta (chain, draw, school) float64 96kB ... tau (chain, draw) float64 12kB ... Attributes: created_at: 2022-10-13T14:37:37.315398 arviz_version: 0.13.0.dev0 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 7.480114936828613 tuning_steps: 1000
chain
(chain)
int64
0 1 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
mu
(chain, draw)
float64
...
[1500 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[12000 values with dtype=float64]
tau
(chain, draw)
float64
...
[1500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 101kB Dimensions: (chain: 3, draw: 500, school: 8) Coordinates: * chain (chain) int64 24B 0 1 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 96kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:41.460544 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 101kB Dimensions: (chain: 3, draw: 500, school: 8) Coordinates: * chain (chain) int64 24B 0 1 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 96kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:37.487399 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0 1 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 186kB Dimensions: (chain: 3, draw: 500) Coordinates: * chain (chain) int64 24B 0 1 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/16) max_energy_error (chain, draw) float64 12kB ... energy_error (chain, draw) float64 12kB ... lp (chain, draw) float64 12kB ... index_in_trajectory (chain, draw) int64 12kB ... acceptance_rate (chain, draw) float64 12kB ... diverging (chain, draw) bool 2kB ... ... ... smallest_eigval (chain, draw) float64 12kB ... step_size_bar (chain, draw) float64 12kB ... step_size (chain, draw) float64 12kB ... energy (chain, draw) float64 12kB ... tree_depth (chain, draw) int64 12kB ... perf_counter_diff (chain, draw) float64 12kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:37.324929 inference_library: pymc inference_library_version: 4.2.2 sampling_time: 7.480114936828613 tuning_steps: 1000
chain
(chain)
int64
0 1 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
energy_error
(chain, draw)
float64
...
[1500 values with dtype=float64]
lp
(chain, draw)
float64
...
[1500 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[1500 values with dtype=int64]
acceptance_rate
(chain, draw)
float64
...
[1500 values with dtype=float64]
diverging
(chain, draw)
bool
...
[1500 values with dtype=bool]
process_time_diff
(chain, draw)
float64
...
[1500 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[1500 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[1500 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
smallest_eigval
(chain, draw)
float64
...
[1500 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[1500 values with dtype=float64]
step_size
(chain, draw)
float64
...
[1500 values with dtype=float64]
energy
(chain, draw)
float64
...
[1500 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[1500 values with dtype=int64]
perf_counter_diff
(chain, draw)
float64
...
[1500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 45kB Dimensions: (chain: 1, draw: 500, school: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: tau (chain, draw) float64 4kB ... theta (chain, draw, school) float64 32kB ... mu (chain, draw) float64 4kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.602116 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
tau
(chain, draw)
float64
...
[500 values with dtype=float64]
theta
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
mu
(chain, draw)
float64
...
[500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 37kB Dimensions: (chain: 1, draw: 500, school: 8) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (chain, draw, school) float64 32kB ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.604969 inference_library: pymc inference_library_version: 4.2.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(chain, draw, school)
float64
...
[4000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 576B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: obs (school) float64 64B ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.606375 inference_library: pymc inference_library_version: 4.2.2
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
obs
(school)
float64
...
[8 values with dtype=float64]
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
<xarray.Dataset> Size: 576B Dimensions: (school: 8) Coordinates: * school (school) <U16 512B 'Choate' 'Deerfield' ... 'Mt. Hermon' Data variables: scores (school) float64 64B ... Attributes: arviz_version: 0.13.0.dev0 created_at: 2022-10-13T14:37:26.607471 inference_library: pymc inference_library_version: 4.2.2
school
(school)
<U16
'Choate' ... 'Mt. Hermon'
array(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', "St. Paul's", 'Mt. Hermon'], dtype='<U16')
scores
(school)
float64
...
[8 values with dtype=float64]
PandasIndex
PandasIndex(Index(['Choate', 'Deerfield', 'Phillips Andover', 'Phillips Exeter', 'Hotchkiss', 'Lawrenceville', 'St. Paul's', 'Mt. Hermon'], dtype='object', name='school'))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4