Perform xarray renaming of variable or coordinate names on all groups.
Loops groups to perform Dataset.rename_vars(name_dict) for every key in name_dict if key is a variable or coordinate names of the dataset. The renaming is performed on all relevant groups (like posterior, prior, sample stats) while non relevant groups like observed data are omitted. See xarray.Dataset.rename_vars()
dict
Dictionary whose keys are current variable or coordinate names and whose values are the desired names.
str
or list
of str
, optional
Groups where the selection is to be applied. Can either be group names or metagroup names.
None
, “like”, “regex”}, optional
If None
(default), interpret groups as the real group or metagroup names. If “like”, interpret groups as substrings of the real group or metagroup names. If “regex”, interpret groups as regular expressions on the real group or metagroup names. A la pandas.filter
.
If True
, modify the InferenceData object inplace, otherwise, return the modified copy.
InferenceData
A new InferenceData object with renamed variables including coordinates by default. When inplace==True
perform renaming in-place and return None
See also
xarray.Dataset.rename_vars
Returns a new object with renamed variables including coordinates.
rename
Perform xarray renaming of variable and dimensions on all groups of an InferenceData object.
rename_dims
Perform xarray renaming of dimensions on all groups of InferenceData object.
Examples
Use rename_vars
to renaming of variable and coordinates on all groups of the InferenceData object. We first check the data variables of original object:
import arviz as az idata = az.load_arviz_data("rugby") idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) float64 960kB ... away_points (chain, draw, match) float64 960kB ... Attributes: created_at: 2024-03-06T20:46:24.120642 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
In order to rename the data variables, we use:
idata.rename_vars({"home": "home_new"}, inplace=True) idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home_new (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home_new
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) float64 960kB ... away_points (chain, draw, match) float64 960kB ... Attributes: created_at: 2024-03-06T20:46:24.120642 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
away_points
(chain, draw, match)
float64
...
[120000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home_new (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home_new
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home_new (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home_new
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4