Extend InferenceData with groups from another InferenceData.
InferenceData
InferenceData to be added
Defines how the two decide which group to keep when the same group is present in both objects. ‘left’ will discard the group in other
whereas ‘right’ will keep the group in other
and discard the one in self
.
False
Emit a warning when custom groups are present in the InferenceData. “custom group” means any group whose name isn’t defined in InferenceData schema specification
See also
add_groups
Add new groups to InferenceData object.
concat
Concatenate InferenceData objects.
Examples
Take two InferenceData objects, and extend the first with the groups it doesn’t have but are present in the 2nd InferenceData object.
First InferenceData:
import arviz as az idata = az.load_arviz_data("radon")
Second InferenceData:
other_idata = az.load_arviz_data("rugby")
Call the extend
method:
idata.extend(other_idata) idata
<xarray.Dataset> Size: 4MB Dimensions: (chain: 4, draw: 500, g_coef: 2, County: 85) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * g_coef (g_coef) <U9 72B 'intercept' 'slope' * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'WRIGHT' 'YELLOW MEDICINE' Data variables: g (chain, draw, g_coef) float64 32kB ... za_county (chain, draw, County) float64 1MB ... b (chain, draw) float64 16kB ... sigma_a (chain, draw) float64 16kB ... a (chain, draw, County) float64 1MB ... a_county (chain, draw, County) float64 1MB ... sigma (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.191355 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
g_coef
(g_coef)
<U9
'intercept' 'slope'
array(['intercept', 'slope'], dtype='<U9')
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
g
(chain, draw, g_coef)
float64
...
[4000 values with dtype=float64]
za_county
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
b
(chain, draw)
float64
...
[2000 values with dtype=float64]
sigma_a
(chain, draw)
float64
...
[2000 values with dtype=float64]
a
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
a_county
(chain, draw, County)
float64
...
[170000 values with dtype=float64]
sigma
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['intercept', 'slope'], dtype='object', name='g_coef'))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.449843 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[1838000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 15MB Dimensions: (chain: 4, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 15MB ... Attributes: created_at: 2020-07-24T18:15:12.448264 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[1838000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 150kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 Data variables: step_size_bar (chain, draw) float64 16kB ... diverging (chain, draw) bool 2kB ... energy (chain, draw) float64 16kB ... tree_size (chain, draw) float64 16kB ... mean_tree_accept (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... depth (chain, draw) int64 16kB ... energy_error (chain, draw) float64 16kB ... lp (chain, draw) float64 16kB ... max_energy_error (chain, draw) float64 16kB ... Attributes: created_at: 2020-07-24T18:15:12.197697 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2 sampling_time: 18.096983432769775 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
mean_tree_accept
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 1MB Dimensions: (chain: 1, draw: 500, County: 85, g_coef: 2) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 494 495 496 497 498 499 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' * g_coef (g_coef) <U9 72B 'intercept' 'slope' Data variables: a_county (chain, draw, County) float64 340kB ... sigma_log__ (chain, draw) float64 4kB ... sigma_a (chain, draw) float64 4kB ... a (chain, draw, County) float64 340kB ... b (chain, draw) float64 4kB ... za_county (chain, draw, County) float64 340kB ... sigma (chain, draw) float64 4kB ... g (chain, draw, g_coef) float64 8kB ... sigma_a_log__ (chain, draw) float64 4kB ... Attributes: created_at: 2020-07-24T18:15:12.454586 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
g_coef
(g_coef)
<U9
'intercept' 'slope'
array(['intercept', 'slope'], dtype='<U9')
a_county
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
sigma_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
sigma_a
(chain, draw)
float64
...
[500 values with dtype=float64]
a
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
b
(chain, draw)
float64
...
[500 values with dtype=float64]
za_county
(chain, draw, County)
float64
...
[42500 values with dtype=float64]
sigma
(chain, draw)
float64
...
[500 values with dtype=float64]
g
(chain, draw, g_coef)
float64
...
[1000 values with dtype=float64]
sigma_a_log__
(chain, draw)
float64
...
[500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
PandasIndex
PandasIndex(Index(['intercept', 'slope'], dtype='object', name='g_coef'))
<xarray.Dataset> Size: 4MB Dimensions: (chain: 1, draw: 500, obs_id: 919) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (chain, draw, obs_id) float64 4MB ... Attributes: created_at: 2020-07-24T18:15:12.457652 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(chain, draw, obs_id)
float64
...
[459500 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 15kB Dimensions: (obs_id: 919) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 7 ... 912 913 914 915 916 917 918 Data variables: y (obs_id) float64 7kB ... Attributes: created_at: 2020-07-24T18:15:12.458415 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
y
(obs_id)
float64
...
[919 values with dtype=float64]
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
<xarray.Dataset> Size: 21kB Dimensions: (obs_id: 919, County: 85) Coordinates: * obs_id (obs_id) int64 7kB 0 1 2 3 4 5 6 ... 912 913 914 915 916 917 918 * County (County) <U17 6kB 'AITKIN' 'ANOKA' ... 'YELLOW MEDICINE' Data variables: floor_idx (obs_id) int32 4kB ... county_idx (obs_id) int32 4kB ... uranium (County) float64 680B ... Attributes: created_at: 2020-07-24T18:15:12.459832 arviz_version: 0.9.0 inference_library: pymc3 inference_library_version: 3.9.2
obs_id
(obs_id)
int64
0 1 2 3 4 5 ... 914 915 916 917 918
array([ 0, 1, 2, ..., 916, 917, 918], shape=(919,))
County
(County)
<U17
'AITKIN' ... 'YELLOW MEDICINE'
array(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='<U17')
floor_idx
(obs_id)
int32
...
[919 values with dtype=int32]
county_idx
(obs_id)
int32
...
[919 values with dtype=int32]
uranium
(County)
float64
...
[85 values with dtype=float64]
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 909, 910, 911, 912, 913, 914, 915, 916, 917, 918], dtype='int64', name='obs_id', length=919))
PandasIndex
PandasIndex(Index(['AITKIN', 'ANOKA', 'BECKER', 'BELTRAMI', 'BENTON', 'BIG STONE', 'BLUE EARTH', 'BROWN', 'CARLTON', 'CARVER', 'CASS', 'CHIPPEWA', 'CHISAGO', 'CLAY', 'CLEARWATER', 'COOK', 'COTTONWOOD', 'CROW WING', 'DAKOTA', 'DODGE', 'DOUGLAS', 'FARIBAULT', 'FILLMORE', 'FREEBORN', 'GOODHUE', 'HENNEPIN', 'HOUSTON', 'HUBBARD', 'ISANTI', 'ITASCA', 'JACKSON', 'KANABEC', 'KANDIYOHI', 'KITTSON', 'KOOCHICHING', 'LAC QUI PARLE', 'LAKE', 'LAKE OF THE WOODS', 'LE SUEUR', 'LINCOLN', 'LYON', 'MAHNOMEN', 'MARSHALL', 'MARTIN', 'MCLEOD', 'MEEKER', 'MILLE LACS', 'MORRISON', 'MOWER', 'MURRAY', 'NICOLLET', 'NOBLES', 'NORMAN', 'OLMSTED', 'OTTER TAIL', 'PENNINGTON', 'PINE', 'PIPESTONE', 'POLK', 'POPE', 'RAMSEY', 'REDWOOD', 'RENVILLE', 'RICE', 'ROCK', 'ROSEAU', 'SCOTT', 'SHERBURNE', 'SIBLEY', 'ST LOUIS', 'STEARNS', 'STEELE', 'STEVENS', 'SWIFT', 'TODD', 'TRAVERSE', 'WABASHA', 'WADENA', 'WASECA', 'WASHINGTON', 'WATONWAN', 'WILKIN', 'WINONA', 'WRIGHT', 'YELLOW MEDICINE'], dtype='object', name='County'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
See how now the first InferenceData has more groups, with the data from the second one, but the groups it originally had have not been modified, even if also present in the second InferenceData.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4