Add new groups to InferenceData object.
dict
of {str
dict
or xarray.Dataset
}, optional
Groups to be added
dict
of {str
array_like}, optional
Coordinates for the dataset
dict
of {str
list
of str
}, optional
Dimensions of each variable. The keys are variable names, values are lists of coordinates.
False
Emit a warning when custom groups are present in the InferenceData. “custom group” means any group whose name isn’t defined in InferenceData schema specification
dict
, optional
The keyword arguments form of group_dict. One of group_dict or kwargs must be provided.
See also
extend
Extend InferenceData with groups from another InferenceData.
concat
Concatenate InferenceData objects.
Examples
Add a log_likelihood
group to the “rugby” example InferenceData after loading.
import arviz as az idata = az.load_arviz_data("rugby") del idata.log_likelihood idata2 = idata.copy() post = idata.posterior obs = idata.observed_data idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
Knowing the model, we can compute it manually. In this case however, we will generate random samples with the right shape.
import numpy as np rng = np.random.default_rng(73) ary = rng.normal(size=(post.sizes["chain"], post.sizes["draw"], obs.sizes["match"])) idata.add_groups( log_likelihood={"home_points": ary}, dims={"home_points": ["match"]}, ) idata
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 965kB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) int64 480B 0 1 2 3 4 5 6 7 ... 52 53 54 55 56 57 58 59 Data variables: home_points (chain, draw, match) float64 960kB -1.093 0.7781 ... 1.643 Attributes: created_at: 2025-08-14T05:08:29.314592+00:00 arviz_version: 0.23.0.dev0
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
int64
0 1 2 3 4 5 6 ... 54 55 56 57 58 59
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59])
home_points
(chain, draw, match)
float64
-1.093 0.7781 ... 0.2405 1.643
array([[[-1.09330591e+00, 7.78087832e-01, -3.81610306e-01, ..., 4.84564099e-01, -1.61693937e+00, -4.19842670e-01], [-2.00619024e-01, -1.70319742e-01, -2.46113915e-01, ..., -1.33266766e+00, 1.80447925e+00, -1.45660509e-01], [-2.50712206e+00, 1.79834383e+00, 6.30248678e-01, ..., -1.02798516e+00, 1.14356634e+00, -3.50814501e-01], ..., [ 9.92650794e-01, -1.16693044e+00, 5.99931728e-01, ..., -3.48188969e-01, 7.35989921e-01, -8.99216695e-01], [-4.51116486e-01, 6.76814555e-01, 5.70786683e-01, ..., 2.18238000e+00, 1.53865762e+00, -8.74706028e-01], [ 1.97950620e-01, 6.17303135e-01, 1.74270395e-03, ..., -4.49897157e-01, 6.93927981e-01, -4.03693064e-01]], [[-5.13438873e-01, 2.06269310e-01, -1.39724013e+00, ..., -1.22238899e-01, 5.39511058e-02, -1.41409473e+00], [ 2.13292127e-01, -1.25754969e-01, -6.19146328e-01, ..., -4.54451615e-01, -9.55102426e-02, 2.46344882e+00], [ 1.09944686e+00, -8.36675090e-01, -6.64849313e-01, ..., 2.06469045e-01, -6.89234364e-01, 1.12970438e+00], ... -8.41882764e-01, 4.18612818e-01, -7.45126198e-01], [ 1.77302616e+00, 2.40029312e-01, -1.03966264e+00, ..., 6.70392549e-04, 3.41461316e-01, -3.99132876e-01], [-4.90112178e-01, 3.20889351e-02, 5.34696144e-01, ..., 4.35765135e-01, 7.36805282e-01, -4.66833157e-01]], [[-7.58144372e-02, -3.20704288e+00, 1.84262524e-01, ..., 1.37396940e+00, -5.05861694e-01, 1.70371025e+00], [-2.22836138e-01, -1.65666088e+00, 8.63975137e-01, ..., -4.32667587e-01, -1.62718307e+00, -1.05026418e-01], [-6.38274887e-01, -7.06321492e-01, -6.25346451e-01, ..., -6.70819376e-02, -3.32003187e-01, -7.02170198e-01], ..., [-6.50718344e-02, 1.26554918e+00, -6.04798463e-01, ..., 4.01464480e-01, -8.61955082e-02, 1.23169374e+00], [ 9.62742755e-01, 1.69023589e-01, -1.08048616e+00, ..., 5.23012393e-01, -1.10747981e+00, 8.18173269e-02], [-5.08068068e-01, 5.31731357e-01, 9.45057998e-01, ..., -1.63968009e-01, 2.40471737e-01, 1.64341233e+00]]], shape=(4, 500, 60))
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59], dtype='int64', name='match'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
This is fine if we have raw data, but a bit inconvenient if we start with labeled data already. Why provide dims and coords manually again? Let’s generate a fake log likelihood (doesn’t match the model but it serves just the same for illustration purposes here) working from the posterior and observed_data groups manually:
import xarray as xr from xarray_einstats.stats import XrDiscreteRV from scipy.stats import poisson dist = XrDiscreteRV(poisson, np.exp(post["atts"])) log_lik = dist.logpmf(obs["home_points"]).to_dataset(name="home_points") idata2.add_groups({"log_likelihood": log_lik}) idata2
<xarray.Dataset> Size: 452kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... atts (chain, draw, team) float64 96kB ... defs (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:23.841916 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 2MB Dimensions: (chain: 4, draw: 500, match: 60) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (chain, draw, match) int64 960kB ... away_points (chain, draw, match) int64 960kB ... Attributes: created_at: 2024-03-06T20:46:25.689246 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
away_points
(chain, draw, match)
int64
...
[120000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 6MB Dimensions: (match: 60, chain: 4, draw: 500, team: 6) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' ... 'Italy' 'England' Data variables: home_points (match, chain, draw, team) float64 6MB -48.59 -53.93 ... -19.41
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home_points
(match, chain, draw, team)
float64
-48.59 -53.93 ... -27.64 -19.41
array([[[[-48.5914546 , -53.92809383, -50.17230602, -55.68686346, -59.67039275, -47.69929723], [-49.22640037, -54.77637304, -50.02742395, -54.80841231, -58.58656597, -48.29825069], [-48.86474371, -54.23605554, -50.73161699, -55.0026618 , -60.65700007, -46.28051862], ..., [-48.65939474, -55.35941968, -50.71763449, -55.79406963, -58.89213141, -46.33808715], [-49.40602131, -54.2478731 , -49.87932897, -55.50268485, -59.14217712, -47.56055486], [-48.17806552, -55.11565456, -51.23485282, -55.2813971 , -59.85342466, -46.11098514]], [[-48.2019635 , -54.15866034, -50.63066381, -56.45087384, -59.7415962 , -46.58731406], [-48.11306068, -55.31766691, -51.02473712, -53.82340766, -59.80999696, -47.66037747], [-48.73684232, -53.09679172, -49.17389586, -56.3261169 , -62.14317585, -46.33235587], ... [-21.40847363, -24.49046815, -21.41594315, -26.0238094 , -27.83905271, -20.28917957], [-21.41374685, -24.93560191, -23.46113556, -23.54626459, -27.42548124, -20.63302984], [-21.42539037, -24.68707518, -20.94315967, -25.93302865, -28.19750406, -20.29805001]], [[-20.73310533, -24.78150244, -22.34244462, -25.33882575, -27.57863517, -20.67113234], [-21.5686552 , -24.02281808, -22.92296485, -25.05929525, -27.93784206, -19.93548215], [-21.109399 , -24.72096174, -21.28710117, -25.49982175, -27.48699734, -21.33330173], ..., [-21.0814991 , -24.78976307, -23.16191769, -25.2147772 , -27.09368788, -20.09506812], [-20.75517439, -24.812034 , -22.18887056, -25.28954404, -28.42395201, -20.01522996], [-21.11267229, -24.91303496, -22.16743662, -26.25275959, -27.64082525, -19.40549187]]]], shape=(60, 4, 500, 6))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 260kB Dimensions: (chain: 4, draw: 500, team: 6) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: home (chain, draw) float64 16kB ... sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... intercept (chain, draw) float64 16kB ... atts_star (chain, draw, team) float64 96kB ... defs_star (chain, draw, team) float64 96kB ... Attributes: created_at: 2024-03-06T20:46:24.377610 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
home
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[2000 values with dtype=float64]
atts_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[12000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 248kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 ... 495 496 497 498 499 Data variables: (12/17) max_energy_error (chain, draw) float64 16kB ... index_in_trajectory (chain, draw) int64 16kB ... smallest_eigval (chain, draw) float64 16kB ... perf_counter_start (chain, draw) float64 16kB ... largest_eigval (chain, draw) float64 16kB ... step_size (chain, draw) float64 16kB ... ... ... reached_max_treedepth (chain, draw) bool 2kB ... perf_counter_diff (chain, draw) float64 16kB ... tree_depth (chain, draw) int64 16kB ... process_time_diff (chain, draw) float64 16kB ... step_size_bar (chain, draw) float64 16kB ... energy (chain, draw) float64 16kB ... Attributes: created_at: 2024-03-06T20:46:23.854033 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9 sampling_time: 8.503105401992798 tuning_steps: 1000
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
max_energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
index_in_trajectory
(chain, draw)
int64
...
[2000 values with dtype=int64]
smallest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
perf_counter_start
(chain, draw)
float64
...
[2000 values with dtype=float64]
largest_eigval
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size
(chain, draw)
float64
...
[2000 values with dtype=float64]
n_steps
(chain, draw)
float64
...
[2000 values with dtype=float64]
lp
(chain, draw)
float64
...
[2000 values with dtype=float64]
diverging
(chain, draw)
bool
...
[2000 values with dtype=bool]
energy_error
(chain, draw)
float64
...
[2000 values with dtype=float64]
acceptance_rate
(chain, draw)
float64
...
[2000 values with dtype=float64]
reached_max_treedepth
(chain, draw)
bool
...
[2000 values with dtype=bool]
perf_counter_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
tree_depth
(chain, draw)
int64
...
[2000 values with dtype=int64]
process_time_diff
(chain, draw)
float64
...
[2000 values with dtype=float64]
step_size_bar
(chain, draw)
float64
...
[2000 values with dtype=float64]
energy
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
<xarray.Dataset> Size: 116kB Dimensions: (chain: 1, draw: 500, team: 6) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 * team (team) <U8 192B 'Wales' 'France' 'Ireland' ... 'Italy' 'England' Data variables: atts_star (chain, draw, team) float64 24kB ... sd_att (chain, draw) float64 4kB ... atts (chain, draw, team) float64 24kB ... sd_def (chain, draw) float64 4kB ... defs (chain, draw, team) float64 24kB ... intercept (chain, draw) float64 4kB ... home (chain, draw) float64 4kB ... defs_star (chain, draw, team) float64 24kB ... Attributes: created_at: 2024-03-06T20:46:09.475945 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
team
(team)
<U8
'Wales' 'France' ... 'England'
array(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='<U8')
atts_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_att
(chain, draw)
float64
...
[500 values with dtype=float64]
atts
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[500 values with dtype=float64]
defs
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
intercept
(chain, draw)
float64
...
[500 values with dtype=float64]
home
(chain, draw)
float64
...
[500 values with dtype=float64]
defs_star
(chain, draw, team)
float64
...
[3000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales', 'France', 'Ireland', 'Scotland', 'Italy', 'England'], dtype='object', name='team'))
<xarray.Dataset> Size: 492kB Dimensions: (chain: 1, draw: 500, match: 60) Coordinates: * chain (chain) int64 8B 0 * draw (draw) int64 4kB 0 1 2 3 4 5 6 ... 493 494 495 496 497 498 499 * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: away_points (chain, draw, match) int64 240kB ... home_points (chain, draw, match) int64 240kB ... Attributes: created_at: 2024-03-06T20:46:09.479330 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
chain
(chain)
int64
0
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
away_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
home_points
(chain, draw, match)
int64
...
[30000 values with dtype=int64]
PandasIndex
PandasIndex(Index([0], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 9kB Dimensions: (match: 60) Coordinates: * match (match) <U16 4kB 'Wales Italy' ... 'Ireland England' home_team (match) <U8 2kB ... away_team (match) <U8 2kB ... Data variables: home_points (match) int64 480B ... away_points (match) int64 480B ... Attributes: created_at: 2024-03-06T20:46:09.480812 arviz_version: 0.17.0 inference_library: pymc inference_library_version: 5.10.4+7.g34d2a5d9
match
(match)
<U16
'Wales Italy' ... 'Ireland England'
array(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='<U16')
home_team
(match)
<U8
...
[60 values with dtype=<U8]
away_team
(match)
<U8
...
[60 values with dtype=<U8]
home_points
(match)
int64
...
[60 values with dtype=int64]
away_points
(match)
int64
...
[60 values with dtype=int64]
PandasIndex
PandasIndex(Index(['Wales Italy', 'France England', 'Ireland Scotland', 'Ireland Wales', 'Scotland England', 'France Italy', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'Scotland France', 'England Wales', 'Italy England', 'Wales Scotland', 'France Ireland', 'Wales England', 'Italy Ireland', 'France Scotland', 'England Italy', 'Ireland France', 'Scotland Wales', 'Scotland Italy', 'France Wales', 'Ireland England', 'Wales Ireland', 'England Scotland', 'Italy France', 'Italy Wales', 'Scotland Ireland', 'England France', 'France Italy', 'Scotland England', 'Ireland Wales', 'France Ireland', 'Wales Scotland', 'Italy England', 'Wales France', 'Italy Scotland', 'England Ireland', 'Ireland Italy', 'England Wales', 'Scotland France', 'Wales Italy', 'Ireland Scotland', 'France England', 'Scotland Ireland', 'England France', 'Italy Wales', 'Italy Ireland', 'Wales England', 'France Scotland', 'Scotland Wales', 'Ireland France', 'England Italy', 'Wales Ireland', 'Italy France', 'England Scotland', 'Scotland Italy', 'France Wales', 'Ireland England'], dtype='object', name='match'))
<xarray.Dataset> Size: 36kB Dimensions: (chain: 4, draw: 500) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 4kB 0 1 2 3 4 5 6 7 ... 493 494 495 496 497 498 499 Data variables: sd_att (chain, draw) float64 16kB ... sd_def (chain, draw) float64 16kB ... Attributes: sd_att: pymc.logprob.transforms.LogTransform sd_def: pymc.logprob.transforms.LogTransform
chain
(chain)
int64
0 1 2 3
draw
(draw)
int64
0 1 2 3 4 5 ... 495 496 497 498 499
array([ 0, 1, 2, ..., 497, 498, 499], shape=(500,))
sd_att
(chain, draw)
float64
...
[2000 values with dtype=float64]
sd_def
(chain, draw)
float64
...
[2000 values with dtype=float64]
PandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
PandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 490, 491, 492, 493, 494, 495, 496, 497, 498, 499], dtype='int64', name='draw', length=500))
Note that in the first example we have used the kwargs
argument and in the second we have used the group_dict
one.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4