H-infinity control synthesis for plant P.
StateSpace
Partitioned LTI plant (state-space system).
Number of measurements (input to controller).
Number of control inputs (output from controller).
StateSpace
Controller to stabilize P
.
StateSpace
Closed loop system.
Infinity norm of closed loop system.
1: control transformation matrix 2: measurement transformation matrix 3: X-Riccati equation 4: Y-Riccati equation
If slycot routine sb10ad is not loaded.
Examples
>>> # Unstable first order SISO system >>> G = ct.tf([1], [1,-1], inputs=['u'], outputs=['y']) >>> all(G.poles() < 0) False
>>> # Create partitioned system with trivial unity systems >>> P11 = ct.tf([0], [1], inputs=['w'], outputs=['z']) >>> P12 = ct.tf([1], [1], inputs=['u'], outputs=['z']) >>> P21 = ct.tf([1], [1], inputs=['w'], outputs=['y']) >>> P22 = G >>> P = ct.interconnect([P11, P12, P21, P22], inplist=['w', 'u'], outlist=['z', 'y'])
>>> # Synthesize Hinf optimal stabilizing controller >>> K, CL, gam, rcond = ct.hinfsyn(P, nmeas=1, ncon=1) >>> T = ct.feedback(G, K, sign=1) >>> all(T.poles() < 0) True
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4