A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://pypi.python.org/pypi/face_recognition below:

face-recognition · PyPI

Face Recognition

Recognize and manipulate faces from Python or from the command line with

the world’s simplest face recognition library.

Built using

dlib

’s state-of-the-art face recognition

built with deep learning. The model has an accuracy of 99.38% on the

This also provides a simple face_recognition command line tool that lets

you do face recognition on a folder of images from the command line!

Features Find faces in pictures

Find all the faces that appear in a picture:

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_locations = face_recognition.face_locations(image)
Find and manipulate facial features in pictures

Get the locations and outlines of each person’s eyes, nose, mouth and chin.

import face_recognition
image = face_recognition.load_image_file("your_file.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

Finding facial features is super useful for lots of important stuff. But you can also use for really stupid stuff

Identify faces in pictures

Recognize who appears in each photo.

import face_recognition
known_image = face_recognition.load_image_file("biden.jpg")
unknown_image = face_recognition.load_image_file("unknown.jpg")

biden_encoding = face_recognition.face_encodings(known_image)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]

results = face_recognition.compare_faces([biden_encoding], unknown_encoding)

You can even use this library with other Python libraries to do real-time face recognition:

See this example for the code.

Installation Requirements Installing on Mac or Linux

First, make sure you have dlib already installed with Python bindings:

Then, install this module from pypi using pip3 (or pip2 for Python 2):

pip3 install face_recognition

If you are having trouble with installation, you can also try out a

Installing on Raspberry Pi 2+ Installing on Windows

While Windows isn’t officially supported, helpful users have posted instructions on how to install this library:

Installing a pre-configured Virtual Machine image Usage Command-Line Interface

When you install face_recognition, you get a simple command-line program

called face_recognition that you can use to recognize faces in a

photograph or folder full for photographs.

First, you need to provide a folder with one picture of each person you

already know. There should be one image file for each person with the

files named according to who is in the picture:

Next, you need a second folder with the files you want to identify:

Then in you simply run the command face_recognition, passing in

the folder of known people and the folder (or single image) with unknown

people and it tells you who is in each image:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/

/unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

There’s one line in the output for each face. The data is comma-separated

with the filename and the name of the person found.

An unknown_person is a face in the image that didn’t match anyone in

your folder of known people.

Adjusting Tolerance / Sensitivity

If you are getting multiple matches for the same person, it might be that

the people in your photos look very similar and a lower tolerance value

is needed to make face comparisons more strict.

You can do that with the --tolerance parameter. The default tolerance

value is 0.6 and lower numbers make face comparisons more strict:

$ face_recognition --tolerance 0.54 ./pictures_of_people_i_know/ ./unknown_pictures/

/unknown_pictures/unknown.jpg,Barack Obama
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person

If you want to see the face distance calculated for each match in order

to adjust the tolerance setting, you can use --show-distance true:

$ face_recognition --show-distance true ./pictures_of_people_i_know/ ./unknown_pictures/

/unknown_pictures/unknown.jpg,Barack Obama,0.378542298956785
/face_recognition_test/unknown_pictures/unknown.jpg,unknown_person,None
More Examples

If you simply want to know the names of the people in each photograph but don’t

care about file names, you could do this:

$ face_recognition ./pictures_of_people_i_know/ ./unknown_pictures/ | cut -d ',' -f2

Barack Obama
unknown_person
Speeding up Face Recognition

Face recognition can be done in parallel if you have a computer with

multiple CPU cores. For example if your system has 4 CPU cores, you can

process about 4 times as many images in the same amount of time by using

all your CPU cores in parallel.

If you are using Python 3.4 or newer, pass in a --cpus <number_of_cpu_cores_to_use> parameter:

$ face_recognition --cpus 4 ./pictures_of_people_i_know/ ./unknown_pictures/

You can also pass in --cpus -1 to use all CPU cores in your system.

Python Module

You can import the face_recognition module and then easily manipulate

faces with just a couple of lines of code. It’s super easy!

API Docs: https://face-recognition.readthedocs.io.

Automatically find all the faces in an image
import face_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image)

# face_locations is now an array listing the co-ordinates of each face!

You can also opt-in to a somewhat more accurate deep-learning-based face detection model.

Note: GPU acceleration (via nvidia’s CUDA library) is required for good

performance with this model. You’ll also want to enable CUDA support

when compliling dlib.

import face_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_locations = face_recognition.face_locations(image, model="cnn")

# face_locations is now an array listing the co-ordinates of each face!

If you have a lot of images and a GPU, you can also

Automatically locate the facial features of a person in an image
import face_recognition

image = face_recognition.load_image_file("my_picture.jpg")
face_landmarks_list = face_recognition.face_landmarks(image)

# face_landmarks_list is now an array with the locations of each facial feature in each face.
# face_landmarks_list[0]['left_eye'] would be the location and outline of the first person's left eye.
Recognize faces in images and identify who they are
import face_recognition

picture_of_me = face_recognition.load_image_file("me.jpg")
my_face_encoding = face_recognition.face_encodings(picture_of_me)[0]

# my_face_encoding now contains a universal 'encoding' of my facial features that can be compared to any other picture of a face!

unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]

# Now we can see the two face encodings are of the same person with `compare_faces`!

results = face_recognition.compare_faces([my_face_encoding], unknown_face_encoding)

if results[0] == True:
    print("It's a picture of me!")
else:
    print("It's not a picture of me!")
Python Code Examples

All the examples are available here.

Face Detection Facial Features Facial Recognition

If you want to learn how face location and recognition work instead of

Caveats Deployment to Cloud Hosts (Heroku, AWS, etc)

Since face_recognition depends on dlib which is written in C++, it can be tricky to deploy an app

using it to a cloud hosting provider like Heroku or AWS.

To make things easier, there’s an example Dockerfile in this repo that shows how to run an app built with

face_recognition

in a

Docker

container. With that, you should be able to deploy

to any service that supports Docker images.

Common Issues

Issue: Illegal instruction (core dumped) when using face_recognition or running examples.

Solution: dlib is compiled with SSE4 or AVX support, but your CPU is too old and doesn’t support that.

Issue: RuntimeError: Unsupported image type, must be 8bit gray or RGB image. when running the webcam examples.

Solution: Your webcam probably isn’t set up correctly with OpenCV. Look here for more.

Issue: MemoryError when running pip2 install face_recognition

Solution: The face_recognition_models file is too big for your available pip cache memory. Instead,

try pip2 --no-cache-dir install face_recognition to avoid the issue.

Issue: AttributeError: 'module' object has no attribute 'face_recognition_model_v1'

Solution: The version of dlib you have installed is too old. You need version 19.7 or newer. Upgrade dlib.

Issue: Attribute Error: 'Module' object has no attribute 'cnn_face_detection_model_v1'

Solution: The version of dlib you have installed is too old. You need version 19.7 or newer. Upgrade dlib.

Issue: TypeError: imread() got an unexpected keyword argument 'mode'

Solution: The version of scipy you have installed is too old. You need version 0.17 or newer. Upgrade scipy.

Thanks History 1.2.3 (2018-08-21) 1.2.2 (2018-04-02) 1.2.1 (2018-02-01) 1.2.0 (2018-02-01) 1.1.0 (2017-09-23) 1.0.0 (2017-08-29) 0.2.2 (2017-07-07) 0.2.1 (2017-07-03) 0.2.0 (2017-06-03) 0.1.14 (2017-04-22) 0.1.13 (2017-04-20) 0.1.12 (2017-04-13) 0.1.11 (2017-03-30) 0.1.10 (2017-03-21) 0.1.9 (2017-03-16) 0.1.8 (2017-03-16) 0.1.7 (2017-03-13)

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4