Affiliations
AffiliationItem in Clipboard
Fitting multilevel models in complex survey data with design weights: RecommendationsAdam C Carle. BMC Med Res Methodol. 2009.
doi: 10.1186/1471-2288-9-49. AffiliationItem in Clipboard
AbstractBackground: Multilevel models (MLM) offer complex survey data analysts a unique approach to understanding individual and contextual determinants of public health. However, little summarized guidance exists with regard to fitting MLM in complex survey data with design weights. Simulation work suggests that analysts should scale design weights using two methods and fit the MLM using unweighted and scaled-weighted data. This article examines the performance of scaled-weighted and unweighted analyses across a variety of MLM and software programs.
Methods: Using data from the 2005-2006 National Survey of Children with Special Health Care Needs (NS-CSHCN: n = 40,723) that collected data from children clustered within states, I examine the performance of scaling methods across outcome type (categorical vs. continuous), model type (level-1, level-2, or combined), and software (Mplus, MLwiN, and GLLAMM).
Results: Scaled weighted estimates and standard errors differed slightly from unweighted analyses, agreeing more with each other than with unweighted analyses. However, observed differences were minimal and did not lead to different inferential conclusions. Likewise, results demonstrated minimal differences across software programs, increasing confidence in results and inferential conclusions independent of software choice.
Conclusion: If including design weights in MLM, analysts should scale the weights and use software that properly includes the scaled weights in the estimation.
Similar articlesSneed RC, May WL, Stencel C. Sneed RC, et al. Pediatrics. 2004 Nov;114(5):e612-25. doi: 10.1542/peds.2004-1063. Pediatrics. 2004. PMID: 15520092
Spears AP. Spears AP. Matern Child Health J. 2010 May;14(3):401-11. doi: 10.1007/s10995-008-0313-9. Epub 2008 Feb 7. Matern Child Health J. 2010. PMID: 18256914
Aboneh EA, Chui MA. Aboneh EA, et al. Res Social Adm Pharm. 2017 May-Jun;13(3):524-529. doi: 10.1016/j.sapharm.2016.05.043. Epub 2016 May 20. Res Social Adm Pharm. 2017. PMID: 27260830 Free PMC article.
Marshall M, Crowther R, Almaraz-Serrano A, Creed F, Sledge W, Kluiter H, Roberts C, Hill E, Wiersma D, Bond GR, Huxley P, Tyrer P. Marshall M, et al. Health Technol Assess. 2001;5(21):1-75. doi: 10.3310/hta5210. Health Technol Assess. 2001. PMID: 11532238 Review.
Sculpher MJ, Pang FS, Manca A, Drummond MF, Golder S, Urdahl H, Davies LM, Eastwood A. Sculpher MJ, et al. Health Technol Assess. 2004 Dec;8(49):iii-iv, 1-192. doi: 10.3310/hta8490. Health Technol Assess. 2004. PMID: 15544708 Review.
Colabianchi N, Griffin JL, Slater SJ, O'Malley PM, Johnston LD. Colabianchi N, et al. Am J Prev Med. 2015 Sep;49(3):387-94. doi: 10.1016/j.amepre.2015.02.012. Epub 2015 Jul 15. Am J Prev Med. 2015. PMID: 26188684 Free PMC article.
Clark CR, Ommerborn MJ, Coull BA, Pham DQ, Haas J. Clark CR, et al. N Engl J Med. 2013 Mar 28;368(13):1263-5. doi: 10.1056/NEJMc1214874. N Engl J Med. 2013. PMID: 23534581 Free PMC article. No abstract available.
Ice E, Ang S, Greenberg K, Burgard S. Ice E, et al. Am J Epidemiol. 2020 Sep 1;189(9):922-930. doi: 10.1093/aje/kwaa042. Am J Epidemiol. 2020. PMID: 32219370 Free PMC article.
Yang T, Jiang S, Oliffe JL, Feng X, Zheng J. Yang T, et al. Prev Sci. 2015 Aug;16(6):801-10. doi: 10.1007/s11121-014-0541-8. Prev Sci. 2015. PMID: 25522885
Rankin KM, Kroelinger CD, Rosenberg D, Barfield WD. Rankin KM, et al. Matern Child Health J. 2012 Dec;16 Suppl 2(0 2):196-202. doi: 10.1007/s10995-012-1190-9. Matern Child Health J. 2012. PMID: 23143158 Free PMC article.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.3