A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://proplot.readthedocs.io/en/latest/api/proplot.colors.SegmentedNorm.html below:

SegmentedNorm — ProPlot documentation

ProPlot SegmentedNorm
class SegmentedNorm(levels, vcenter=None, vmin=None, vmax=None, clip=None, fair=True)[source]

Bases: Normalize

Normalizer that scales data linearly with respect to the interpolated index in an arbitrary monotonic level sequence.

Parameters
  • levels (sequence of float) – The level boundaries. Must be monotonically increasing or decreasing.

  • vcenter (float, default: None) – The central colormap value. Default is to omit this.

  • vmin (float, optional) – Ignored but included for consistency. Set to min(levels).

  • vmax (float, optional) – Ignored but included for consistency. Set to max(levels).

  • clip (bool, optional) – Whether to clip values falling outside of vmin and vmax.

  • fair (bool, optional) – Whether to use fair scaling. See DivergingNorm.

Note

The algorithm this normalizer uses to select normalized values in-between level list indices is adapted from the algorithm LinearSegmentedColormap uses to select channel values in-between segment data points (hence the name SegmentedNorm).

Example

In the below example, unevenly spaced levels are passed to contourf, resulting in the automatic application of SegmentedNorm.

>>> import proplot as pplt
>>> import numpy as np
>>> levels = [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000]
>>> data = 10 ** (3 * np.random.rand(10, 10))
>>> fig, ax = pplt.subplots()
>>> ax.contourf(data, levels=levels)

Methods Summary


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4