A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://plotly.com/python/ohlc-charts/ below:

Ohlc charts in Python

OHLC Charts in Python

How to make interactive OHLC charts in Python with Plotly. Six examples of OHLC charts with Pandas, time series, and yahoo finance data.

Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.

The OHLC chart (for open, high, low and close) is a style of financial chart describing open, high, low and close values for a given x coordinate (most likely time). The tip of the lines represent the low and high values and the horizontal segments represent the open and close values. Sample points where the close value is higher (lower) then the open value are called increasing (decreasing). By default, increasing items are drawn in green whereas decreasing are drawn in red.

See also Candlestick Charts and other financial charts.

Simple OHLC Chart with Pandas

In [1]:

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(data=go.Ohlc(x=df['Date'],
                    open=df['AAPL.Open'],
                    high=df['AAPL.High'],
                    low=df['AAPL.Low'],
                    close=df['AAPL.Close']))
fig.show()
OHLC Chart without Rangeslider

In [2]:

import plotly.graph_objects as go

import pandas as pd


df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(data=go.Ohlc(x=df['Date'],
                open=df['AAPL.Open'],
                high=df['AAPL.High'],
                low=df['AAPL.Low'],
                close=df['AAPL.Close']))
fig.update(layout_xaxis_rangeslider_visible=False)
fig.show()
Adding Customized Text and Annotations

In [3]:

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(data=go.Ohlc(x=df['Date'],
                open=df['AAPL.Open'],
                high=df['AAPL.High'],
                low=df['AAPL.Low'],
                close=df['AAPL.Close']))

fig.update_layout(
    title=dict(text='The Great Recession'),
    yaxis=dict(title=dict(text='AAPL Stock')),
    shapes = [dict(
        x0='2016-12-09', x1='2016-12-09', y0=0, y1=1, xref='x', yref='paper',
        line_width=2)],
    annotations=[dict(
        x='2016-12-09', y=0.05, xref='x', yref='paper',
        showarrow=False, xanchor='left', text='Increase Period Begins')]
)

fig.show()

In [4]:

import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(data=[go.Ohlc(
    x=df['Date'],
    open=df['AAPL.Open'], high=df['AAPL.High'],
    low=df['AAPL.Low'], close=df['AAPL.Close'],
    increasing_line_color= 'cyan', decreasing_line_color= 'gray'
)])
fig.show()
Simple OHLC with datetime Objects

In [5]:

import plotly.graph_objects as go

from datetime import datetime

open_data = [33.0, 33.3, 33.5, 33.0, 34.1]
high_data = [33.1, 33.3, 33.6, 33.2, 34.8]
low_data = [32.7, 32.7, 32.8, 32.6, 32.8]
close_data = [33.0, 32.9, 33.3, 33.1, 33.1]
dates = [datetime(year=2013, month=10, day=10),
         datetime(year=2013, month=11, day=10),
         datetime(year=2013, month=12, day=10),
         datetime(year=2014, month=1, day=10),
         datetime(year=2014, month=2, day=10)]

fig = go.Figure(data=[go.Ohlc(x=dates,
                          open=open_data, high=high_data,
                          low=low_data, close=close_data)])
fig.show()

In [6]:

import plotly.graph_objects as go

import pandas as pd
from datetime import datetime

hovertext=[]
for i in range(len(df['AAPL.Open'])):
    hovertext.append('Open: '+str(df['AAPL.Open'][i])+'<br>Close: '+str(df['AAPL.Close'][i]))

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')

fig = go.Figure(data=go.Ohlc(x=df['Date'],
                open=df['AAPL.Open'],
                high=df['AAPL.High'],
                low=df['AAPL.Low'],
                close=df['AAPL.Close'],
                text=hovertext,
                hoverinfo='text'))
fig.show()
What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4