How to make line charts in Python with Plotly. Examples on creating and styling line charts in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
In [1]:
import plotly.express as px df = px.data.gapminder().query("country=='Canada'") fig = px.line(df, x="year", y="lifeExp", title='Life expectancy in Canada') fig.show()Line Plots with column encoding color¶
In [2]:
import plotly.express as px df = px.data.gapminder().query("continent=='Oceania'") fig = px.line(df, x="year", y="lifeExp", color='country') fig.show()Line charts in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Data Order in Line Charts¶Plotly line charts are implemented as connected scatterplots (see below), meaning that the points are plotted and connected with lines in the order they are provided, with no automatic reordering.
This makes it possible to make charts like the one below, but also means that it may be required to explicitly sort data before passing it to Plotly to avoid lines moving "backwards" across the chart.
In [4]:
import plotly.express as px import pandas as pd df = pd.DataFrame(dict( x = [1, 3, 2, 4], y = [1, 2, 3, 4] )) fig = px.line(df, x="x", y="y", title="Unsorted Input") fig.show() df = df.sort_values(by="x") fig = px.line(df, x="x", y="y", title="Sorted Input") fig.show()Connected Scatterplots¶
In a connected scatterplot, two continuous variables are plotted against each other, with a line connecting them in some meaningful order, usually a time variable. In the plot below, we show the "trajectory" of a pair of countries through a space defined by GDP per Capita and Life Expectancy.
In [5]:
import plotly.express as px df = px.data.gapminder().query("country in ['Canada', 'Botswana']") fig = px.line(df, x="lifeExp", y="gdpPercap", color="country", text="year") fig.update_traces(textposition="bottom right") fig.show()Line charts with markers¶
The markers
argument can be set to True
to show markers on lines.
In [6]:
import plotly.express as px df = px.data.gapminder().query("continent == 'Oceania'") fig = px.line(df, x='year', y='lifeExp', color='country', markers=True) fig.show()
In [7]:
import plotly.express as px df = px.data.gapminder().query("continent == 'Oceania'") fig = px.line(df, x='year', y='lifeExp', color='country', symbol="country") fig.show()
In [8]:
import plotly.express as px df = px.data.stocks() fig = px.line(df, x='date', y="GOOG") fig.show()Sparklines with Plotly Express¶
Sparklines are scatter plots inside subplots, with gridlines, axis lines, and ticks removed.
In [9]:
import plotly.express as px df = px.data.stocks(indexed=True) fig = px.line(df, facet_row="company", facet_row_spacing=0.01, height=200, width=200) # hide and lock down axes fig.update_xaxes(visible=False, fixedrange=True) fig.update_yaxes(visible=False, fixedrange=True) # remove facet/subplot labels fig.update_layout(annotations=[], overwrite=True) # strip down the rest of the plot fig.update_layout( showlegend=False, plot_bgcolor="white", margin=dict(t=10,l=10,b=10,r=10) ) # disable the modebar for such a small plot fig.show(config=dict(displayModeBar=False))Line Plot with go.Scatter¶
If Plotly Express does not provide a good starting point, it is possible to use the more generic go.Scatter
class from plotly.graph_objects
. Whereas plotly.express
has two functions scatter
and line
, go.Scatter
can be used both for plotting points (makers) or lines, depending on the value of mode
. The different options of go.Scatter
are documented in its reference page.
In [10]:
import plotly.graph_objects as go import numpy as np x = np.arange(10) fig = go.Figure(data=go.Scatter(x=x, y=x**2)) fig.show()
In [11]:
import plotly.graph_objects as go # Create random data with numpy import numpy as np np.random.seed(1) N = 100 random_x = np.linspace(0, 1, N) random_y0 = np.random.randn(N) + 5 random_y1 = np.random.randn(N) random_y2 = np.random.randn(N) - 5 # Create traces fig = go.Figure() fig.add_trace(go.Scatter(x=random_x, y=random_y0, mode='lines', name='lines')) fig.add_trace(go.Scatter(x=random_x, y=random_y1, mode='lines+markers', name='lines+markers')) fig.add_trace(go.Scatter(x=random_x, y=random_y2, mode='markers', name='markers')) fig.show()Style Line Plots¶
This example styles the color and dash of the traces, adds trace names, modifies line width, and adds plot and axes titles.
In [12]:
import plotly.graph_objects as go # Add data month = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] high_2000 = [32.5, 37.6, 49.9, 53.0, 69.1, 75.4, 76.5, 76.6, 70.7, 60.6, 45.1, 29.3] low_2000 = [13.8, 22.3, 32.5, 37.2, 49.9, 56.1, 57.7, 58.3, 51.2, 42.8, 31.6, 15.9] high_2007 = [36.5, 26.6, 43.6, 52.3, 71.5, 81.4, 80.5, 82.2, 76.0, 67.3, 46.1, 35.0] low_2007 = [23.6, 14.0, 27.0, 36.8, 47.6, 57.7, 58.9, 61.2, 53.3, 48.5, 31.0, 23.6] high_2014 = [28.8, 28.5, 37.0, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] low_2014 = [12.7, 14.3, 18.6, 35.5, 49.9, 58.0, 60.0, 58.6, 51.7, 45.2, 32.2, 29.1] fig = go.Figure() # Create and style traces fig.add_trace(go.Scatter(x=month, y=high_2014, name='High 2014', line=dict(color='firebrick', width=4))) fig.add_trace(go.Scatter(x=month, y=low_2014, name = 'Low 2014', line=dict(color='royalblue', width=4))) fig.add_trace(go.Scatter(x=month, y=high_2007, name='High 2007', line=dict(color='firebrick', width=4, dash='dash') # dash options include 'dash', 'dot', and 'dashdot' )) fig.add_trace(go.Scatter(x=month, y=low_2007, name='Low 2007', line = dict(color='royalblue', width=4, dash='dash'))) fig.add_trace(go.Scatter(x=month, y=high_2000, name='High 2000', line = dict(color='firebrick', width=4, dash='dot'))) fig.add_trace(go.Scatter(x=month, y=low_2000, name='Low 2000', line=dict(color='royalblue', width=4, dash='dot'))) # Edit the layout fig.update_layout( title=dict( text='Average High and Low Temperatures in New York' ), xaxis=dict( title=dict( text='Month' ) ), yaxis=dict( title=dict( text='Temperature (degrees F)' ) ), ) fig.show()Connect Data Gaps¶
connectgaps determines if missing values in the provided data are shown as a gap in the graph or not. In this tutorial, we showed how to take benefit of this feature and illustrate multiple areas on a tile map.
In [13]:
import plotly.graph_objects as go x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] fig = go.Figure() fig.add_trace(go.Scatter( x=x, y=[10, 20, None, 15, 10, 5, 15, None, 20, 10, 10, 15, 25, 20, 10], name = '<b>No</b> Gaps', # Style name/legend entry with html tags connectgaps=True # override default to connect the gaps )) fig.add_trace(go.Scatter( x=x, y=[5, 15, None, 10, 5, 0, 10, None, 15, 5, 5, 10, 20, 15, 5], name='Gaps', )) fig.show()Interpolation with Line Plots¶
In [14]:
import plotly.graph_objects as go import numpy as np x = np.array([1, 2, 3, 4, 5]) y = np.array([1, 3, 2, 3, 1]) fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y, name="linear", line_shape='linear')) fig.add_trace(go.Scatter(x=x, y=y + 5, name="spline", text=["tweak line smoothness<br>with 'smoothing' in line object"], hoverinfo='text+name', line_shape='spline')) fig.add_trace(go.Scatter(x=x, y=y + 10, name="vhv", line_shape='vhv')) fig.add_trace(go.Scatter(x=x, y=y + 15, name="hvh", line_shape='hvh')) fig.add_trace(go.Scatter(x=x, y=y + 20, name="vh", line_shape='vh')) fig.add_trace(go.Scatter(x=x, y=y + 25, name="hv", line_shape='hv')) fig.update_traces(hoverinfo='text+name', mode='lines+markers') fig.update_layout(legend=dict(y=0.5, traceorder='reversed', font_size=16)) fig.show()Label Lines with Annotations¶
In [15]:
import plotly.graph_objects as go import numpy as np title = 'Main Source for News' labels = ['Television', 'Newspaper', 'Internet', 'Radio'] colors = ['rgb(67,67,67)', 'rgb(115,115,115)', 'rgb(49,130,189)', 'rgb(189,189,189)'] mode_size = [8, 8, 12, 8] line_size = [2, 2, 4, 2] x_data = np.vstack((np.arange(2001, 2014),)*4) y_data = np.array([ [74, 82, 80, 74, 73, 72, 74, 70, 70, 66, 66, 69], [45, 42, 50, 46, 36, 36, 34, 35, 32, 31, 31, 28], [13, 14, 20, 24, 20, 24, 24, 40, 35, 41, 43, 50], [18, 21, 18, 21, 16, 14, 13, 18, 17, 16, 19, 23], ]) fig = go.Figure() for i in range(0, 4): fig.add_trace(go.Scatter(x=x_data[i], y=y_data[i], mode='lines', name=labels[i], line=dict(color=colors[i], width=line_size[i]), connectgaps=True, )) # endpoints fig.add_trace(go.Scatter( x=[x_data[i][0], x_data[i][-1]], y=[y_data[i][0], y_data[i][-1]], mode='markers', marker=dict(color=colors[i], size=mode_size[i]) )) fig.update_layout( xaxis=dict( showline=True, showgrid=False, showticklabels=True, linecolor='rgb(204, 204, 204)', linewidth=2, ticks='outside', tickfont=dict( family='Arial', size=12, color='rgb(82, 82, 82)', ), ), yaxis=dict( showgrid=False, zeroline=False, showline=False, showticklabels=False, ), autosize=False, margin=dict( autoexpand=False, l=100, r=20, t=110, ), showlegend=False, plot_bgcolor='white' ) annotations = [] # Adding labels for y_trace, label, color in zip(y_data, labels, colors): # labeling the left_side of the plot annotations.append(dict(xref='paper', x=0.05, y=y_trace[0], xanchor='right', yanchor='middle', text=label + ' {}%'.format(y_trace[0]), font=dict(family='Arial', size=16), showarrow=False)) # labeling the right_side of the plot annotations.append(dict(xref='paper', x=0.95, y=y_trace[11], xanchor='left', yanchor='middle', text='{}%'.format(y_trace[11]), font=dict(family='Arial', size=16), showarrow=False)) # Title annotations.append(dict(xref='paper', yref='paper', x=0.0, y=1.05, xanchor='left', yanchor='bottom', text='Main Source for News', font=dict(family='Arial', size=30, color='rgb(37,37,37)'), showarrow=False)) # Source annotations.append(dict(xref='paper', yref='paper', x=0.5, y=-0.1, xanchor='center', yanchor='top', text='Source: PewResearch Center & ' + 'Storytelling with data', font=dict(family='Arial', size=12, color='rgb(150,150,150)'), showarrow=False)) fig.update_layout(annotations=annotations) fig.show()
In [16]:
import plotly.graph_objects as go import numpy as np x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] x_rev = x[::-1] # Line 1 y1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y1_upper = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] y1_lower = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] y1_lower = y1_lower[::-1] # Line 2 y2 = [5, 2.5, 5, 7.5, 5, 2.5, 7.5, 4.5, 5.5, 5] y2_upper = [5.5, 3, 5.5, 8, 6, 3, 8, 5, 6, 5.5] y2_lower = [4.5, 2, 4.4, 7, 4, 2, 7, 4, 5, 4.75] y2_lower = y2_lower[::-1] # Line 3 y3 = [10, 8, 6, 4, 2, 0, 2, 4, 2, 0] y3_upper = [11, 9, 7, 5, 3, 1, 3, 5, 3, 1] y3_lower = [9, 7, 5, 3, 1, -.5, 1, 3, 1, -1] y3_lower = y3_lower[::-1] fig = go.Figure() fig.add_trace(go.Scatter( x=x+x_rev, y=y1_upper+y1_lower, fill='toself', fillcolor='rgba(0,100,80,0.2)', line_color='rgba(255,255,255,0)', showlegend=False, name='Fair', )) fig.add_trace(go.Scatter( x=x+x_rev, y=y2_upper+y2_lower, fill='toself', fillcolor='rgba(0,176,246,0.2)', line_color='rgba(255,255,255,0)', name='Premium', showlegend=False, )) fig.add_trace(go.Scatter( x=x+x_rev, y=y3_upper+y3_lower, fill='toself', fillcolor='rgba(231,107,243,0.2)', line_color='rgba(255,255,255,0)', showlegend=False, name='Ideal', )) fig.add_trace(go.Scatter( x=x, y=y1, line_color='rgb(0,100,80)', name='Fair', )) fig.add_trace(go.Scatter( x=x, y=y2, line_color='rgb(0,176,246)', name='Premium', )) fig.add_trace(go.Scatter( x=x, y=y3, line_color='rgb(231,107,243)', name='Ideal', )) fig.update_traces(mode='lines') fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4