How to make gauge charts in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
Overview¶In this tutorial we introduce a new trace named "Indicator". The purpose of "indicator" is to visualize a single value specified by the "value" attribute. Three distinct visual elements are available to represent that value: number, delta and gauge. Any combination of them can be specified via the "mode" attribute. Top-level attributes are:
Then we can configure the 3 different visual elements via their respective container:
"delta" simply displays the difference between the value with respect to a reference. It has attributes:
Finally, we can have a simple title for the indicator via
title
with 'text' attribute which is a string, and 'align' which can be set to left, center, and right. There are two gauge types:
angularand
bullet. Here is a combination of both shapes (angular, bullet), and different modes (gauge, delta, and value):
In [1]:
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Indicator( value = 200, delta = {'reference': 160}, gauge = { 'axis': {'visible': False}}, domain = {'row': 0, 'column': 0})) fig.add_trace(go.Indicator( value = 120, gauge = { 'shape': "bullet", 'axis' : {'visible': False}}, domain = {'x': [0.05, 0.5], 'y': [0.15, 0.35]})) fig.add_trace(go.Indicator( mode = "number+delta", value = 300, domain = {'row': 0, 'column': 1})) fig.add_trace(go.Indicator( mode = "delta", value = 40, domain = {'row': 1, 'column': 1})) fig.update_layout( grid = {'rows': 2, 'columns': 2, 'pattern': "independent"}, template = {'data' : {'indicator': [{ 'title': {'text': "Speed"}, 'mode' : "number+delta+gauge", 'delta' : {'reference': 90}}] }})A Single Angular Gauge Chart¶
In [2]:
import plotly.graph_objects as go fig = go.Figure(go.Indicator( mode = "gauge+number", value = 450, title = {'text': "Speed"}, domain = {'x': [0, 1], 'y': [0, 1]} )) fig.show()Bullet Gauge¶
The equivalent of above "angular gauge":
In [3]:
import plotly.graph_objects as go fig = go.Figure(go.Indicator( mode = "number+gauge+delta", gauge = {'shape': "bullet"}, delta = {'reference': 300}, value = 220, domain = {'x': [0.1, 1], 'y': [0.2, 0.9]}, title = {'text': "Avg order size"})) fig.show()Showing Information above Your Chart¶
Another interesting feature is that indicator trace sits above the other traces (even the 3d ones). This way, it can be easily used as an overlay as demonstrated below
In [4]:
import plotly.graph_objects as go fig = go.Figure(go.Indicator( mode = "number+delta", value = 492, delta = {"reference": 512, "valueformat": ".0f"}, title = {"text": "Users online"}, domain = {'y': [0, 1], 'x': [0.25, 0.75]})) fig.add_trace(go.Scatter( y = [325, 324, 405, 400, 424, 404, 417, 432, 419, 394, 410, 426, 413, 419, 404, 408, 401, 377, 368, 361, 356, 359, 375, 397, 394, 418, 437, 450, 430, 442, 424, 443, 420, 418, 423, 423, 426, 440, 437, 436, 447, 460, 478, 472, 450, 456, 436, 418, 429, 412, 429, 442, 464, 447, 434, 457, 474, 480, 499, 497, 480, 502, 512, 492])) fig.update_layout(xaxis = {'range': [0, 62]}) fig.show()Data Cards / Big Numbers¶
Data card helps to display more contextual information about the data. Sometimes one number is all you want to see in a report, such as total sales, annual revenue, etc. This example shows how to visualize these big numbers:
In [5]:
import plotly.graph_objects as go fig = go.Figure(go.Indicator( mode = "number+delta", value = 400, number = {'prefix': "$"}, delta = {'position': "top", 'reference': 320}, domain = {'x': [0, 1], 'y': [0, 1]})) fig.update_layout(paper_bgcolor = "lightgray") fig.show()It's possible to display several numbers¶
In [6]:
import plotly.graph_objects as go fig = go.Figure() fig.add_trace(go.Indicator( mode = "number+delta", value = 200, domain = {'x': [0, 0.5], 'y': [0, 0.5]}, delta = {'reference': 400, 'relative': True, 'position' : "top"})) fig.add_trace(go.Indicator( mode = "number+delta", value = 350, delta = {'reference': 400, 'relative': True}, domain = {'x': [0, 0.5], 'y': [0.5, 1]})) fig.add_trace(go.Indicator( mode = "number+delta", value = 450, title = {"text": "Accounts<br><span style='font-size:0.8em;color:gray'>Subtitle</span><br><span style='font-size:0.8em;color:gray'>Subsubtitle</span>"}, delta = {'reference': 400, 'relative': True}, domain = {'x': [0.6, 1], 'y': [0, 1]})) fig.show()Adding a Prefix and Suffix¶
On both a number
and a delta
, you can add a string to appear before the value using prefix
. You can add a string to appear after the value using suffix
. In the following example, we add '$' as a prefix
and 'm' as suffix
for both the number
and delta
.
Note: suffix
and prefix
on delta
are new in 5.10
In [7]:
import plotly.graph_objects as go fig = go.Figure(go.Indicator( mode = "number+delta", value = 492, number = {"prefix": "$", "suffix": "m"}, delta = {"reference": 512, "valueformat": ".0f", "prefix": "$", "suffix": "m"}, title = {"text": "Profit"}, domain = {'y': [0, 1], 'x': [0.25, 0.75]})) fig.add_trace(go.Scatter( y = [325, 324, 405, 400, 424, 404, 417, 432, 419, 394, 410, 426, 413, 419, 404, 408, 401, 377, 368, 361, 356, 359, 375, 397, 394, 418, 437, 450, 430, 442, 424, 443, 420, 418, 423, 423, 426, 440, 437, 436, 447, 460, 478, 472, 450, 456, 436, 418, 429, 412, 429, 442, 464, 447, 434, 457, 474, 480, 499, 497, 480, 502, 512, 492])) fig.update_layout(xaxis = {'range': [0, 62]}) fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4