How to make interactive Distplots in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
In [1]:
import plotly.express as px df = px.data.tips() fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=df.columns) fig.show()
In [2]:
import plotly.express as px df = px.data.tips() fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="box", # or violin, rug hover_data=df.columns) fig.show()Combined statistical representations in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Combined statistical representations with distplot figure factory¶The distplot figure factory displays a combination of statistical representations of numerical data, such as histogram, kernel density estimation or normal curve, and rug plot.
Basic Distplot¶A histogram, a kde plot and a rug plot are displayed.
In [4]:
import plotly.figure_factory as ff import numpy as np np.random.seed(1) x = np.random.randn(1000) hist_data = [x] group_labels = ['distplot'] # name of the dataset fig = ff.create_distplot(hist_data, group_labels) fig.show()
In [5]:
import plotly.figure_factory as ff import numpy as np # Add histogram data x1 = np.random.randn(200) - 2 x2 = np.random.randn(200) x3 = np.random.randn(200) + 2 x4 = np.random.randn(200) + 4 # Group data together hist_data = [x1, x2, x3, x4] group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4'] # Create distplot with custom bin_size fig = ff.create_distplot(hist_data, group_labels, bin_size=.2) fig.show()Use Multiple Bin Sizes¶
Different bin sizes are used for the different datasets with the bin_size
argument.
In [6]:
import plotly.figure_factory as ff import numpy as np # Add histogram data x1 = np.random.randn(200)-2 x2 = np.random.randn(200) x3 = np.random.randn(200)+2 x4 = np.random.randn(200)+4 # Group data together hist_data = [x1, x2, x3, x4] group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4'] # Create distplot with custom bin_size fig = ff.create_distplot(hist_data, group_labels, bin_size=[.1, .25, .5, 1]) fig.show()Customize Rug Text, Colors & Title¶
In [7]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(26) x2 = np.random.randn(26) + .5 group_labels = ['2014', '2015'] rug_text_one = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] rug_text_two = ['aa', 'bb', 'cc', 'dd', 'ee', 'ff', 'gg', 'hh', 'ii', 'jj', 'kk', 'll', 'mm', 'nn', 'oo', 'pp', 'qq', 'rr', 'ss', 'tt', 'uu', 'vv', 'ww', 'xx', 'yy', 'zz'] rug_text = [rug_text_one, rug_text_two] # for hover in rug plot colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)'] # Create distplot with custom bin_size fig = ff.create_distplot( [x1, x2], group_labels, bin_size=.2, rug_text=rug_text, colors=colors) fig.update_layout(title_text='Customized Distplot') fig.show()
In [8]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(200) x2 = np.random.randn(200) + 2 group_labels = ['Group 1', 'Group 2'] colors = ['slategray', 'magenta'] # Create distplot with curve_type set to 'normal' fig = ff.create_distplot([x1, x2], group_labels, bin_size=.5, curve_type='normal', # override default 'kde' colors=colors) # Add title fig.update_layout(title_text='Distplot with Normal Distribution') fig.show()
In [9]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(200) - 1 x2 = np.random.randn(200) x3 = np.random.randn(200) + 1 hist_data = [x1, x2, x3] group_labels = ['Group 1', 'Group 2', 'Group 3'] colors = ['#333F44', '#37AA9C', '#94F3E4'] # Create distplot with curve_type set to 'normal' fig = ff.create_distplot(hist_data, group_labels, show_hist=False, colors=colors) # Add title fig.update_layout(title_text='Curve and Rug Plot') fig.show()
In [10]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(200) - 1 x2 = np.random.randn(200) x3 = np.random.randn(200) + 1 hist_data = [x1, x2, x3] group_labels = ['Group 1', 'Group 2', 'Group 3'] colors = ['#835AF1', '#7FA6EE', '#B8F7D4'] # Create distplot with curve_type set to 'normal' fig = ff.create_distplot(hist_data, group_labels, colors=colors, bin_size=.25, show_curve=False) # Add title fig.update_layout(title_text='Hist and Rug Plot') fig.show()Plot Hist and Rug with Different Bin Sizes¶
In [11]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(200) - 2 x2 = np.random.randn(200) x3 = np.random.randn(200) + 2 hist_data = [x1, x2, x3] group_labels = ['Group 1', 'Group 2', 'Group 3'] colors = ['#393E46', '#2BCDC1', '#F66095'] fig = ff.create_distplot(hist_data, group_labels, colors=colors, bin_size=[0.3, 0.2, 0.1], show_curve=False) # Add title fig.update(layout_title_text='Hist and Rug Plot') fig.show()Plot Only Hist and Curve¶
In [12]:
import plotly.figure_factory as ff import numpy as np x1 = np.random.randn(200) - 2 x2 = np.random.randn(200) x3 = np.random.randn(200) + 2 hist_data = [x1, x2, x3] group_labels = ['Group 1', 'Group 2', 'Group 3'] colors = ['#A56CC1', '#A6ACEC', '#63F5EF'] # Create distplot with curve_type set to 'normal' fig = ff.create_distplot(hist_data, group_labels, colors=colors, bin_size=.2, show_rug=False) # Add title fig.update_layout(title_text='Hist and Curve Plot') fig.show()
In [13]:
import plotly.figure_factory as ff import numpy as np import pandas as pd df = pd.DataFrame({'2012': np.random.randn(200), '2013': np.random.randn(200)+1}) fig = ff.create_distplot([df[c] for c in df.columns], df.columns, bin_size=.25) fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4