A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://plotly.com/python/distplot/ below:

Distplots in Python

Distplots in Python

How to make interactive Distplots in Python with Plotly.

Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.

In [1]:

import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug",
                   hover_data=df.columns)
fig.show()

In [2]:

import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex",
                   marginal="box", # or violin, rug
                   hover_data=df.columns)
fig.show()
Combined statistical representations in Dash

Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash, click "Download" to get the code and run python app.py.

Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.

Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.

Combined statistical representations with distplot figure factory

The distplot figure factory displays a combination of statistical representations of numerical data, such as histogram, kernel density estimation or normal curve, and rug plot.

Basic Distplot

A histogram, a kde plot and a rug plot are displayed.

In [4]:

import plotly.figure_factory as ff
import numpy as np
np.random.seed(1)

x = np.random.randn(1000)
hist_data = [x]
group_labels = ['distplot'] # name of the dataset

fig = ff.create_distplot(hist_data, group_labels)
fig.show()

In [5]:

import plotly.figure_factory as ff
import numpy as np

# Add histogram data
x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2
x4 = np.random.randn(200) + 4

# Group data together
hist_data = [x1, x2, x3, x4]

group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']

# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels, bin_size=.2)
fig.show()
Use Multiple Bin Sizes

Different bin sizes are used for the different datasets with the bin_size argument.

In [6]:

import plotly.figure_factory as ff
import numpy as np

# Add histogram data
x1 = np.random.randn(200)-2
x2 = np.random.randn(200)
x3 = np.random.randn(200)+2
x4 = np.random.randn(200)+4

# Group data together
hist_data = [x1, x2, x3, x4]

group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']

# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels, bin_size=[.1, .25, .5, 1])
fig.show()
Customize Rug Text, Colors & Title

In [7]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(26)
x2 = np.random.randn(26) + .5

group_labels = ['2014', '2015']

rug_text_one = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
                'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
                'u', 'v', 'w', 'x', 'y', 'z']

rug_text_two = ['aa', 'bb', 'cc', 'dd', 'ee', 'ff', 'gg', 'hh', 'ii', 'jj',
                'kk', 'll', 'mm', 'nn', 'oo', 'pp', 'qq', 'rr', 'ss', 'tt',
                'uu', 'vv', 'ww', 'xx', 'yy', 'zz']

rug_text = [rug_text_one, rug_text_two] # for hover in rug plot
colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)']

# Create distplot with custom bin_size
fig = ff.create_distplot(
    [x1, x2], group_labels, bin_size=.2,
    rug_text=rug_text, colors=colors)

fig.update_layout(title_text='Customized Distplot')
fig.show()

In [8]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(200)
x2 = np.random.randn(200) + 2

group_labels = ['Group 1', 'Group 2']

colors = ['slategray', 'magenta']

# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot([x1, x2], group_labels, bin_size=.5,
                         curve_type='normal', # override default 'kde'
                         colors=colors)

# Add title
fig.update_layout(title_text='Distplot with Normal Distribution')
fig.show()

In [9]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(200) - 1
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 1

hist_data = [x1, x2, x3]

group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#333F44', '#37AA9C', '#94F3E4']

# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, show_hist=False, colors=colors)

# Add title
fig.update_layout(title_text='Curve and Rug Plot')
fig.show()

In [10]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(200) - 1
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 1

hist_data = [x1, x2, x3]

group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#835AF1', '#7FA6EE', '#B8F7D4']

# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, colors=colors, bin_size=.25,
                         show_curve=False)

# Add title
fig.update_layout(title_text='Hist and Rug Plot')
fig.show()
Plot Hist and Rug with Different Bin Sizes

In [11]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2

hist_data = [x1, x2, x3]

group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#393E46', '#2BCDC1', '#F66095']

fig = ff.create_distplot(hist_data, group_labels, colors=colors,
                         bin_size=[0.3, 0.2, 0.1], show_curve=False)

# Add title
fig.update(layout_title_text='Hist and Rug Plot')
fig.show()
Plot Only Hist and Curve

In [12]:

import plotly.figure_factory as ff
import numpy as np

x1 = np.random.randn(200) - 2
x2 = np.random.randn(200)
x3 = np.random.randn(200) + 2

hist_data = [x1, x2, x3]

group_labels = ['Group 1', 'Group 2', 'Group 3']
colors = ['#A56CC1', '#A6ACEC', '#63F5EF']

# Create distplot with curve_type set to 'normal'
fig = ff.create_distplot(hist_data, group_labels, colors=colors,
                         bin_size=.2, show_rug=False)

# Add title
fig.update_layout(title_text='Hist and Curve Plot')
fig.show()

In [13]:

import plotly.figure_factory as ff
import numpy as np
import pandas as pd

df = pd.DataFrame({'2012': np.random.randn(200),
                   '2013': np.random.randn(200)+1})
fig = ff.create_distplot([df[c] for c in df.columns], df.columns, bin_size=.25)
fig.show()
What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4