How to format axes of 3d plots in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
Range of axes¶3D figures have an attribute in layout
called scene
, which contains attributes such as xaxis
, yaxis
and zaxis
parameters, in order to set the range, title, ticks, color etc. of the axes.
For creating 3D charts, see this page.
Set range
on an axis to manually configure a range for that axis. If you don't set range
, it's automatically calculated. In this example, we set a range
on xaxis
, yaxis
, and zaxis
.
In [1]:
import plotly.graph_objects as go import numpy as np np.random.seed(1) N = 70 fig = go.Figure(data=[go.Mesh3d(x=(70*np.random.randn(N)), y=(55*np.random.randn(N)), z=(40*np.random.randn(N)), opacity=0.5, color='rgba(244,22,100,0.6)' )]) fig.update_layout( scene = dict( xaxis = dict(nticks=4, range=[-100,100],), yaxis = dict(nticks=4, range=[-50,100],), zaxis = dict(nticks=4, range=[-100,100],),), width=700, margin=dict(r=20, l=10, b=10, t=10)) fig.show()Setting only a Lower or Upper Bound for Range¶
New in 5.17
You can also set just a lower or upper bound for range
. In this case, autorange is used for the other bound. In this example, we apply autorange to the lower bound of the yaxis
and the upper bound of zaxis
by setting them to None
.
In [2]:
import plotly.graph_objects as go import numpy as np np.random.seed(1) N = 70 fig = go.Figure(data=[go.Mesh3d(x=(70*np.random.randn(N)), y=(55*np.random.randn(N)), z=(40*np.random.randn(N)), opacity=0.5, color='rgba(244,22,100,0.6)' )]) fig.update_layout( scene = dict( xaxis = dict(nticks=4, range=[-100,100],), yaxis = dict(nticks=4, range=[None, 100],), zaxis = dict(nticks=4, range=[-100, None],),), width=700, margin=dict(r=20, l=10, b=10, t=10)) fig.show()
In [3]:
import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np N = 50 fig = make_subplots(rows=2, cols=2, specs=[[{'is_3d': True}, {'is_3d': True}], [{'is_3d': True}, {'is_3d': True}]], print_grid=False) for i in [1,2]: for j in [1,2]: fig.add_trace( go.Mesh3d( x=(60*np.random.randn(N)), y=(25*np.random.randn(N)), z=(40*np.random.randn(N)), opacity=0.5, ), row=i, col=j) fig.update_layout(width=700, margin=dict(r=10, l=10, b=10, t=10)) # fix the ratio in the top left subplot to be a cube fig.update_layout(scene_aspectmode='cube') # manually force the z-axis to appear twice as big as the other two fig.update_layout(scene2_aspectmode='manual', scene2_aspectratio=dict(x=1, y=1, z=2)) # draw axes in proportion to the proportion of their ranges fig.update_layout(scene3_aspectmode='data') # automatically produce something that is well proportioned using 'data' as the default fig.update_layout(scene4_aspectmode='auto') fig.show()
In [4]:
import plotly.graph_objects as go import numpy as np # Define random surface N = 50 fig = go.Figure() fig.add_trace(go.Mesh3d(x=(60*np.random.randn(N)), y=(25*np.random.randn(N)), z=(40*np.random.randn(N)), opacity=0.5, color='yellow' )) fig.add_trace(go.Mesh3d(x=(70*np.random.randn(N)), y=(55*np.random.randn(N)), z=(30*np.random.randn(N)), opacity=0.5, color='pink' )) fig.update_layout(scene = dict( xaxis=dict( title=dict( text='X AXIS TITLE' ) ), yaxis=dict( title=dict( text='Y AXIS TITLE' ) ), zaxis=dict( title=dict( text='Z AXIS TITLE' ) ), ), width=700, margin=dict(r=20, b=10, l=10, t=10)) fig.show()
In [5]:
import plotly.graph_objects as go import numpy as np # Define random surface N = 50 fig = go.Figure(data=[go.Mesh3d(x=(60*np.random.randn(N)), y=(25*np.random.randn(N)), z=(40*np.random.randn(N)), opacity=0.5, color='rgba(100,22,200,0.5)' )]) # Different types of customized ticks fig.update_layout(scene = dict( xaxis = dict( ticktext= ['TICKS','MESH','PLOTLY','PYTHON'], tickvals= [0,50,75,-50]), yaxis = dict( nticks=5, tickfont=dict( color='green', size=12, family='Old Standard TT, serif',), ticksuffix='#'), zaxis = dict( nticks=4, ticks='outside', tick0=0, tickwidth=4),), width=700, margin=dict(r=10, l=10, b=10, t=10) ) fig.show()Background and Grid Color¶
In [6]:
import plotly.graph_objects as go import numpy as np N = 50 fig = go.Figure(data=[go.Mesh3d(x=(30*np.random.randn(N)), y=(25*np.random.randn(N)), z=(30*np.random.randn(N)), opacity=0.5,)]) # xaxis.backgroundcolor is used to set background color fig.update_layout(scene = dict( xaxis = dict( backgroundcolor="rgb(200, 200, 230)", gridcolor="white", showbackground=True, zerolinecolor="white",), yaxis = dict( backgroundcolor="rgb(230, 200,230)", gridcolor="white", showbackground=True, zerolinecolor="white"), zaxis = dict( backgroundcolor="rgb(230, 230,200)", gridcolor="white", showbackground=True, zerolinecolor="white",),), width=700, margin=dict( r=10, l=10, b=10, t=10) ) fig.show()Disabling tooltip spikes¶
By default, guidelines originating from the tooltip point are drawn. It is possible to disable this behaviour with the showspikes
parameter. In this example we only keep the z
spikes (projection of the tooltip on the x-y
plane). Hover on the data to show this behaviour.
In [7]:
import plotly.graph_objects as go import numpy as np N = 50 fig = go.Figure(data=[go.Mesh3d(x=(30*np.random.randn(N)), y=(25*np.random.randn(N)), z=(30*np.random.randn(N)), opacity=0.5,)]) fig.update_layout(scene=dict(xaxis_showspikes=False, yaxis_showspikes=False)) fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4