How to format axes ticks in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
If "linear"
, the placement of the ticks is determined by a starting position tick0
and a tick step dtick
In [1]:
import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout( xaxis = dict( tickmode = 'linear', tick0 = 0.5, dtick = 0.75 ) ) fig.show()
If "array"
, the placement of the ticks is set via tickvals
and the tick text is ticktext
.
In [2]:
import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout( xaxis = dict( tickmode = 'array', tickvals = [1, 3, 5, 7, 9, 11], ticktext = ['One', 'Three', 'Five', 'Seven', 'Nine', 'Eleven'] ) ) fig.show()Dynamic tickmode in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Using Tickformat Attribute¶In [4]:
import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [28.8, 28.5, 37, 56.8, 69.7, 79.7, 78.5, 77.8, 74.1, 62.6, 45.3, 39.9] )) fig.update_layout(yaxis_tickformat = '%') fig.show()Using Tickformat Attribute - Date/Time¶
In [5]:
import plotly.graph_objects as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv') fig = go.Figure(go.Scatter( x = df['Date'], y = df['AAPL.High'], )) fig.update_layout( title = 'Time Series with Custom Date-Time Format', xaxis_tickformat = '%d %B (%a)<br>%Y' ) fig.show()Using Exponentformat Attribute¶
In [6]:
import plotly.graph_objects as go fig = go.Figure(go.Scatter( x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], y = [68000, 52000, 60000, 20000, 95000, 40000, 60000, 79000, 74000, 42000, 20000, 90000] )) fig.update_layout( yaxis = dict( showexponent = 'all', exponentformat = 'e' ) ) fig.show()Tickformatstops to customize for different zoom levels¶
In [7]:
import plotly.graph_objects as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv') fig = go.Figure(go.Scatter( x = df['Date'], y = df['mavg'] )) fig.update_layout( xaxis_tickformatstops = [ dict(dtickrange=[None, 1000], value="%H:%M:%S.%L ms"), dict(dtickrange=[1000, 60000], value="%H:%M:%S s"), dict(dtickrange=[60000, 3600000], value="%H:%M m"), dict(dtickrange=[3600000, 86400000], value="%H:%M h"), dict(dtickrange=[86400000, 604800000], value="%e. %b d"), dict(dtickrange=[604800000, "M1"], value="%e. %b w"), dict(dtickrange=["M1", "M12"], value="%b '%y M"), dict(dtickrange=["M12", None], value="%Y Y") ] ) fig.show()Placing ticks and gridlines between categories¶
In [8]:
import plotly.graph_objects as go fig = go.Figure(go.Bar( x = ["apples", "oranges", "pears"], y = [1, 2, 3] )) fig.update_xaxes( showgrid=True, ticks="outside", tickson="boundaries", ticklen=20 ) fig.show()What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px fig = go.Figure() # or any Plotly Express function e.g. px.bar(...) # fig.add_trace( ... ) # fig.update_layout( ... ) from dash import Dash, dcc, html app = Dash() app.layout = html.Div([ dcc.Graph(figure=fig) ]) app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4