A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://plot.ly/python/scatter-plots-on-maps/ below:

Scatter plots on maps in Python

Scatter Plots on Maps in Python

How to make scatter plots on maps in Python. Scatter plots on maps highlight geographic areas and can be colored by value.

Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.

In [1]:

import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.scatter_geo(df, locations="iso_alpha",
                     size="pop", # size of markers, "pop" is one of the columns of gapminder
                     )
fig.show()
Customize geographical scatter plot

In [2]:

import plotly.express as px
df = px.data.gapminder().query("year == 2007")
fig = px.scatter_geo(df, locations="iso_alpha",
                     color="continent", # which column to use to set the color of markers
                     hover_name="country", # column added to hover information
                     size="pop", # size of markers
                     projection="natural earth")
fig.show()
Basic Example with GeoPandas

px.scatter_geo can work well with GeoPandas dataframes whose geometry is of type Point.

In [3]:

import plotly.express as px
import geopandas as gpd

geo_df = gpd.read_file(gpd.datasets.get_path('naturalearth_cities'))

px.set_mapbox_access_token(open(".mapbox_token").read())
fig = px.scatter_geo(geo_df,
                    lat=geo_df.geometry.y,
                    lon=geo_df.geometry.x,
                    hover_name="name")
fig.show()
U.S. Airports Map

Here we show how to use go.Scattergeo from plotly.graph_objects.

Simple U.S. Airports Map

In [4]:

import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv')
df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str)

fig = go.Figure(data=go.Scattergeo(
        lon = df['long'],
        lat = df['lat'],
        text = df['text'],
        mode = 'markers',
        marker_color = df['cnt'],
        ))

fig.update_layout(
        title = 'Most trafficked US airports<br>(Hover for airport names)',
        geo_scope='usa',
    )
fig.show()
Styled U.S. Airports Map

In [5]:

import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv')
df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str)


fig = go.Figure(data=go.Scattergeo(
        locationmode = 'USA-states',
        lon = df['long'],
        lat = df['lat'],
        text = df['text'],
        mode = 'markers',
        marker = dict(
            size = 8,
            opacity = 0.8,
            reversescale = True,
            autocolorscale = False,
            symbol = 'square',
            line = dict(
                width=1,
                color='rgba(102, 102, 102)'
            ),
            colorscale = 'Blues',
            cmin = 0,
            color = df['cnt'],
            cmax = df['cnt'].max(),
            colorbar=dict(
                title=dict(
                    text="Incoming flights<br>February 2011"
                )
            )
        )))

fig.update_layout(
        title = 'Most trafficked US airports<br>(Hover for airport names)',
        geo = dict(
            scope='usa',
            projection_type='albers usa',
            showland = True,
            landcolor = "rgb(250, 250, 250)",
            subunitcolor = "rgb(217, 217, 217)",
            countrycolor = "rgb(217, 217, 217)",
            countrywidth = 0.5,
            subunitwidth = 0.5
        ),
    )
fig.show()
North American Precipitation Map

In [6]:

import plotly.graph_objects as go

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2015_06_30_precipitation.csv')

scl = [0,"rgb(150,0,90)"],[0.125,"rgb(0, 0, 200)"],[0.25,"rgb(0, 25, 255)"],\
[0.375,"rgb(0, 152, 255)"],[0.5,"rgb(44, 255, 150)"],[0.625,"rgb(151, 255, 0)"],\
[0.75,"rgb(255, 234, 0)"],[0.875,"rgb(255, 111, 0)"],[1,"rgb(255, 0, 0)"]

fig = go.Figure(data=go.Scattergeo(
    lat = df['Lat'],
    lon = df['Lon'],
    text = df['Globvalue'].astype(str) + ' inches',
    marker = dict(
        color = df['Globvalue'],
        colorscale = scl,
        reversescale = True,
        opacity = 0.7,
        size = 2,
        colorbar = dict(
            title = dict(
                side="right"
            ),
            outlinecolor = "rgba(68, 68, 68, 0)",
            ticks = "outside",
            showticksuffix = "last",
            dtick = 0.1
        )
    )
))

fig.update_layout(
    geo = dict(
        scope = 'north america',
        showland = True,
        landcolor = "rgb(212, 212, 212)",
        subunitcolor = "rgb(255, 255, 255)",
        countrycolor = "rgb(255, 255, 255)",
        showlakes = True,
        lakecolor = "rgb(255, 255, 255)",
        showsubunits = True,
        showcountries = True,
        resolution = 50,
        projection = dict(
            type = 'conic conformal',
            rotation_lon = -100
        ),
        lonaxis = dict(
            showgrid = True,
            gridwidth = 0.5,
            range= [ -140.0, -55.0 ],
            dtick = 5
        ),
        lataxis = dict (
            showgrid = True,
            gridwidth = 0.5,
            range= [ 20.0, 60.0 ],
            dtick = 5
        )
    ),
    title=dict(text='US Precipitation 06-30-2015<br>Source: <a href="http://water.weather.gov/precip/">NOAA</a>'),
)
fig.show()
What About Dash?

Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.

Learn about how to install Dash at https://dash.plot.ly/installation.

Everywhere in this page that you see fig.show(), you can display the same figure in a Dash application by passing it to the figure argument of the Graph component from the built-in dash_core_components package like this:

import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )

from dash import Dash, dcc, html

app = Dash()
app.layout = html.Div([
    dcc.Graph(figure=fig)
])

app.run(debug=True, use_reloader=False)  # Turn off reloader if inside Jupyter

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4